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New relations are established between the spectrum of a linear system and the indices of inertia of its quadratic integral. A detailed
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1. LINEAR SYSTEMS WITH A QUADRATIC INTEGRAL
AND ARTIN SPACES

Consider the linear system of differential equations
i=Ax, xe R” (1.1)

with a non-degenerate operator A(|4 | # 0); the system is assumed to have a first intcgral which is a
non-degenerate quadratic form

f = (Bx,x)/2, |Bl#0 (1.2)

It has been shown [1] that Egs (1.1) are Hamiltonian. A symplectic structure w is defined by the skew-
symmetric matrix

Q = BA™ (o(x', x") = (Qx', x"))
and the Hamiltonian is identical with the quadratic form f:
i, = o(v,dx) =df, v=Ax

In particular, n is even (n = 2k) and, as pointed out in [2], the spectrum of the operation A is
symmetrical about the real and imaginary axes.

The case when the incrtia index of the quadratic form (1.2) equals n/2 = k is of particular interest.
If the form (1.2) is taken as a pseudo-Euclidean metric in (R”, then (R”, f) will be an Artin space [3].
On the other hand, R" has a natural symplectic structure o. This enables us to generate the symplectic
geometry of the Artin space. The first steps were carried out in [1], where, for n = 4, the question of
the position of the completely singular planes relative to the three-dimensional family of Lagrangian
planes was linked with the construction of the spectrum and eigenvectors of the operator 4. Some results
of |1] will be extended below to the case of arbitrary n.

We recall a k-dimensional plane AX icontaim'ng the point x = 0) is said to be Lagrangian if
o(x’,x") = 0 for allx’, x" € A. A planc A" is said to be singular if it lies entirely in the isotropic cone
{f(x) = 0}. Finally, a plane A is said to be invariant if the trajectory of system (1.1) through each point
of A lies entircly in A.
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Proposition 1. Singular Lagrangian planes are invariant.
Proof. We must prove that if x € A, thenx = Ax € A. This means that w(A4x, z) = 0 for all vectors z € A. But

©(Ax,z) = (BA\(Ax),2) = (Bx,2)

On the other hand
2(Bx,z) = (B(x+2), x+2)—(Bx,x)-(Bz,2) = 0

by virtue of the singularity assumption, which it was required to prove.
One can prove in a similar fashion that invariant Lagrangian planes are singular.

Example. The linearized equations of motion of a mechanical system with k degrees of freedom to
which potential and gyroscopic forces are applied are

7+T:+Pz =0, zeR* (1.3)
where T" = T is the matrix of gyroscopic forces and V' = (Pz, z)/2 is the potential energy. Equations
(1.3) may be written as Lagrange equations with Lagrangian

NS PPRNOND 1 _1
L= 2(2, z)+2(z, T'2) 2(Pz, 7)

Applying a Legendre transformation, one can change to Hamiltonian equations with a quadratic
Hamiltonian

= G O4Y = 30,0~ 30.TD + 3(Po ) - 5(o D)

where y =z + I'z/2. Clearly, the inertial index of the integral H equals k = n/2 if the potential energy
V has a strict maximum at the equilibrium posmon z = 0 (the matrix P is negative definite).

Let A = {y = Dz} be a k-dimensional plane in R* containing the equilibrium state z = y = 0. This
plane will be singular if

(Dz, Dz) - (Dz, T2) + (Pz,2) - (2, T22)/4 =

In other words,

p’p+pp” DT-ID, , I’
2 2 4

=0 (1.4)

The planc A is Lagrangian (relative to the standard symplectic structure in Ry if the matrix D is

symmetric. In the case Eq. (1.4) is slightly simplified:

2
2_D_F_EL_D+1>_%=0 (1.5)

As is well-known (see [4]) this is the criterion for the plane A to be invariant. In particular, a Lagrangian
singular plane will be invariant (as statcd in Proposition 1).

D

2. DEGREES OF STABILITY AND INDICES OF INERTTA

The degree of stability s of system (1.1) is the number of pairs of pure imaginary roots of the characteristic
equation of the operator 4 (counting their fultiplicities). The degree of instability u is the number of
roots (with their multiplicities) of the characteristic equation of 4 that lie in the right complex half-
plane. One can also define the real degree of instability r as the number of positive real roots of the
characteristic equation. Since the spectrum of the other respect to reflection in the real axis, it follows
that

u=r mod2 2.1)
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Let it(i) be the positive (negative) index of inertia of the quadratic form (1.2). Since the form is
non-degenerate, i* + i” = n. Qbviously, i* — i is always even. It has been shown [1] that

u=i mod2 2.2)

By (2.1), this congruencc is equivalent to r =i~ (mod 2). In particular, if i is odd, the equilibrium
x = 0 of system (1.1) is unstable. This statement generalizes a classical theorem of Thomson, which
states that an equilibrium of system (1.3) with odd Poincaré degrec of instability cannot be gyroscopically
stabilized.

Example. 1.t system (1.1) and integral (1.2) depend on a parameter €, and suppose that for small
£ < 0 the form (1.2) is positive definite (i" = 0); when € = 0 it becomes degenerate, and for small
€ > 0its index of incrtia i~ equals 1. Then system (1.1) becomes unstablc as € passes through the value
zero. Note that this stability exchange principle is independent of the dimensionality of the phase space,
and therefore (under suitable natural conditions) it also holds in the infinite-dimensional case.

We now add to the congruence (2.2) a simpler proposition regarding the degree of stability.

Theorem 1. The degree of stability is even if and only if i* =i (mod 4).

Corollary. 1f the difference between the indices of inertia / * —i is not divisible by 4, there is at least
one pair of pure imaginary roots.

The proof of Thcorem 1 uses the fact that |4 ||B| > 0. Indeed, the matrix Q = BA™ is non-singular
and skew-symmetric. Consequently, » is even and |R2] > 0. Smce the spectrum of A is symmetrical
about the real and i lmagmary axes, its characteristic polynomial |4 — AE| is in fact a polynomial in
u = A% of degree n/2 = k. It has the form

g = we i tg g = Al

Since the quadratlc form (1.2) is, by assumption, non-degcnerate, =k +m,i =k-m,and
consequent]yz - i = 2m. Clearly, sign |B| = (-1)i” = (-1)*"™. Since |4||B| > 0, it follows that sign

= ()"

Let k be even. Then p¥ — +oo as K — —eo and sign g, = (-1)". Consequently, if m is even (odd),
then the number s of negative roots (with multiplicities) of the polynomial g is even (odd).

Now let k be odd. Then p* — — as p — — and sign g, = —(-1)". Consequently, if m is even (odd),
then s is also even (odd), which it was required to prove.

Example. Let system (1.3) have two degrees of freedom (k = 2) and Poincaré degree of mstablhty
one. Theni* = 3,i = 1,and soi* —i' is not divisible by 4. Thus, by Thcorem 1, there is always a pair
of pure imaginary roots. By Thomson’s theorem, the other two roots will be real numbers of opposite
signs.

In the typical case when the eigenvalues of the operator A are different, one can indicate simple
relations among the degrees of stability and instability and indices of the quadratic integral, from which
the propositions formulated above will follow. Since system (1.1) is Hamiltonian, it follows from
Williamson’s theorem that R” is a direct sum of invariant subspaces which are skew-orthogonal (relative
to the bilinear form ®), so that integral (1.2) may be represented as a sum of quadratic forms in these
subspaces. These forms are usually called partial Hamiltonians. To a simple real pair of eigenvalues a,
-a there corresponds a partial Hamlltoman apq of signature +-, to a pure imaginary pair xib there
corresponds a Hamiltonian +b(p* + ¢ )/2 of signature ++ or -~, and to a quadruplet of cigenvalues
*a*ib there corresponds a Hamiltonian —a(pq; + pA2) + b(p1q2 - p2q1) of signature ++-—.

Let s*(s") be the number of pairs of pure lmagmary eigenvalues to which correspond partial
Hamiltonians of signature ++(~-). Obviously, s* + s~ = s. Since f is non-degenerate,

+ +

u=2s =i, u+2s =i (2.3)

This immediately implies the congruence (2.2). Subtracting the second relation of (2.3) from the first,
we get

25 =s) =it =i (24)
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Since the numbers s* —s™ and i* — i” are of the same parity, equality (2.4) implies the conclusion of
Theorem 1. Equality (2.4) also implies the uscful inequality

lit-il<2s (2.5)

Example. If the conditions for the stability exchange principle to be valid are satisfied, a simple pair
of rcal eigenvalues appears, the remaining eigenvalues remaining pure imaginary. Indeed, here i” = 1,
i* = n—1. Consequently, by inequality (2.5), s = k — 1, where k = n/2. Thuss = k- 1.

It would be useful to extend these observations to the case of multiple roots with non-trivial Jordan
cells.

3. STRONG STABILITY

An equilibrium x = 0 of system (1.1) is said to be strongly stable if the eigenvalues of the operator 4
are pure imaginary and different. The property of strong stability is preserved under small
perturbations of system (1.1). Clearly, a strongly stable equilibrium will be stable in Lyapunov’s sense.
The converse is, of course, not true. However, the conditions for the pure imaginary eigenvalues of the
operator A4 to be identical define the boundary of the stability domain.

We will now investigate the case in which the pseudo-Euclidean space (R", f) is an Artin space
(i = i"*). The coliection of all kK = n/2-dimensional planes in R" that pass through the pointx = 0 is a
smooth Grassman manifold G of dimension k%. The set of all k&-dimensional Lagrangian (singular) planes
is a smooth submanifold L(S) in G of dimension k(k + 1)/2 (k(k - 1)/2, respectively). Since dim G =
dim I, + dim S, it is natural to seek conditions under which L and S intersect.

Theorem 2. If an equilibrium of system (1.1) is strongly stable, then L and S do not intersect.
The result was proved in [1] for n = 4. Theorem 1 becomes false if strong stability is replaced by
stability in Lyapunov’s sense (for cxamples, sce [1]).

Corollary. If asingular Lagrangian n/2-dimensional plane exists, the equilibrium x = () is not strongly
stable.

Proof. Since the eigenvalues of the operator 4 are pure imaginary and distinct, and system (1.1) is
Hamiltonian, canonically conjugate coordinates py, ... , Pg, 41, .. » gx (2k = n) exist, in which the
Hamiltonian has the form

f= kl(p,z+qf)/2+ +Xk(pf+q:)/2 (3.1)

where || is the frequency of small oscillations, with Alz kf (see, e.g., [5]). The Hamiltonian (3.1) is
the quadratic form (1.2) expressed in the new variables. In particular, the indices of inertia of the form
(1.2) and (3.1) are the same. Since the linear space R% with pseudo-Euclidean metric (3.1) is an Artin
space, the numbers of positive and negative coefficients A; in (3.1) are equal. In particular, k is even,
and therefore the dimensionality of the phase space must be divisible by 4.

Remark. At first glance, this last conclusion seems to contradict the example of a mechanical system
with gyroscopic forces and an odd number of degrees of freedom (see Section 1). However, if P < 0
(only in that case does the total energy generate the structure of an Artin space), then the equilibrium
of system (1.3) will be unstable by the classical Thomson theorem (since the Poincaré degree of instability
is odd).

Let A be a Lagrangian plane. We will first consider the case in which the equation of A may be written
in a form that is solvable for the momentum:

p = Mg (32)

where M = |{m;|| is a symmetric k x k matrix. Let us assume that the plane A is singular. Substituting
relation (3.2) into expression (3.1) for the Hamiltonian, we arrive at the equation

(Jg,q)+(JMg,Mq) = 0 (3.3)
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where J = diag(,, ..., Ay). Since the form (3.3) must vanish for all ¢ € R, it follows that
MIM = -J (3.4)

Note that if Eq. (3.4) is replaced by the more general one M'JM = -J, it is always solvable in the
larger class of non-singular k x & matrices (since the index of inertia of the form (Jg, q) is k/2). We must
show that this equation has no symmetric solutions.

Since A; # 0, it follows that [J| = 0. Consequently, |M| %0, and in particular M has an inverse.

Multlplymg Eq. (3.4) on the left and right by M, we obtain
MM =g (3.5)

Multiplying together the left- and right-hand sides of Eqs (3.4) and (3.5), respectivcly, we arrive at the
relation

MM =/

that is to say, the matrices M and J? commute, MJ? = J’M.
We will show that the matrix M is also diagonal. Indeed, let

77 = diag(i,, ..., 1), u; = lf
Then
2 2
MI™ = |lwmy, I°M = fum,|

Consequently, pm;; = wm; for all i, j. Since w; # p; (¢ #j), it follows that my; = 0 for all i # .

Thus, M = diag(m,, .. m,j But then the matrix equation (3.4) reduces to the contradictory relations
7Lm ;= —}.7 Hence Eq. (3 4) cannot have any symmetric solutions.

We will now consider the case when the equation of the Lagrangian plane cannot be written in the
form (3.2), solvable for the momenta. In the most general case, one can always choose a set of canonical
coordinates

Pip s Pips Qjp 9, (3.6)

is such a way that
(1) (s +v s im) (J1s -+ jx_m) is a partition of the set (1, ... , n) into two disjoint parts,
(2) the equation of the Lagrangian k-dimensional plane A has the form

iy =my g o tmy g tMy Pt My Dy

.................................................................... (3.7)
RCTI R T L N 3 Pl Y R e LI

where ||m,;|| is a symmetric k x k matrix. Note that one of the two non-intersecting parts of the set of
indices 1, ... , n may be empty.

Assuming that the plane A is singular, we substitute expressions (3.7) into formula (3.1) for the
Hamiltonian and equate the resulting quadratic form to zero. As a result we again obtain Eq. (3.4) for
the symmetric matrlx M, whlch equation (as shown previously) has no symmetric solutions if no two
of the numbers A}, ... , A? are equal. This completes the proof of Theorem 2.

4. SOME GENERALIZATIONS

Let us consider the more general case in which all the eigenvalues of the non-degenerate operator 4
are pure imaginary and (in the case of multiple eigenvalues) without Jordan cells. This case corresponds
to the property of Lyapunov stability of the equilibrium position of system (1.1). In certain suitable
canonical coordinates p;, ... , Py, 4, ... ; qx, the Hamiltonian function again has the form (3.1). We may
assume without loss of generality that

<Pl <Ay 4.1)



334 V. V. Kozlov

As before, we will assume that the index of inertia of the non-degenerate quadratic form (3.1) is k.
We will now describe all cases in which there is a Lagrangian singular k-dimensional plane.
Let

=== P> M2 = g = o = Ay
m = ka,,,_,+1| = o= Ry

The linear space R* decomposes as a direct sum of m subspaces I1; 11, of dimensions k, k; - &y,
. » k — k), respectively; the space IT; is defined by the linear relations

(42)

Pr=41 = - =P T4y = 0, Pewt S Qge1 = - S Pk = U = 0.

Clearly, all these subspaces are invariant with respect to the phase flow of the linear Hamiltonian system
with Hamiltonian (3.1) (and conscquently also of the original system (1.1)).

Theorem 3. System (1.1) with the integral (1.2) admits of a singular Lagrangian plane if and only if
the index of inertia of the restriction of the quadratic form f to each subspace IJ; is dimIT;/2.

In particular, the dimensions of the subspaces I, ... , IT; must be muitiples of four If the inequalities
in the chain (4.1) arc strict, Thcorem 3 implies Theorcm 2.

Proof. We will first verify the sufficiency of the conditions. To that end, it will suffice to consider the
case in which n = 4 and the Hamiltonian is

a(pi+q1)12-a(ps+q/2, a>0 43)

In the general case, as pointed out previously, k is a multiple of 4 and the matrix M of Eq. (3.4) may
be found as a partitioned matrix with symmetric 4 x 4 matrices along the diagonal, defining the equations
of a Lagrangian singular plane for the system with Hamiltonian (4.3).

We will describe all two-dimensional singular Lagrangian planes for thc Hamiltonian system with
Hamiltonian (4.3):

shag, + chag,, p, = tchag, +shog,

Ay py

AL:py=1p, q, =7Fq,

where o is a real parameter. As & — * o, the plane A obviously tends to the Lagrangian singular plane
AZ. In fact, the union of the two continuous families of planes AZ, 0.€ R, and the two singular planes
AL in the four-dimensional Grassman manifold G is a topologlcal circle T (as a hyperbola in the
projective plane, it is in fact an oval).

In the general case k = 4s, s € N, and the Lagrangian singular planes form an s-dimensional manifold
parameterized by the points of an s-dimensional torus T°.

Necessity is proved in the same way as Theorem 2. One has to solve the matnx equatlon (3 4), from
which it follows, in particular, that the matrices M and J2 commute. Let J2 = drag(k .- » A}), where
the numbers A; satisfy conditions (4.2). Then M = diag(M,, My, ... , M,,,), where M, Mz, .. y M, are
square symmetric matrices of orders ki, ks — kg, ... ,k—-k,.._4, respectively. This follows at once from a
comparison of the explicit forms of the matrices MJ* and J*M.

Thus, the problem reduces to checking the equations

T
MJM;=-J, M; =M, 4.4)
for solvability in each of the subspaces I1;. Note that the matrix J; in (4.4) is diagonal, each diagonal
element bcmg one of the numbers +)7(7.7 = 0).

It remains to remark that there is the same number of positive diagonal elements and negative ones,
for otherwise (by the law of inertia) it would not be possible by the linear transformation defined by
M; to transform the quadratic form (J;x, x), x € I, to the quadratic form —(J;x, x). This completes the
proof of the theorem.
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5. COMPLETE INSTABILITY

System (1.1) with the maximum possible degree of instability (u = n/2) is said to be completely unstable.
In that case the spectrum of the operator A has no pure imaginary eigenvalues at all.
Our main result is the following theorem.

Theorem 4. If all the eigenvalues of the operator A are simple, then a Lagrangian singular plane exists
if and only if system (1.1) is completely unstable.

Equality of the eigenvalues is an exceptional phenomenon. Hence if there is at least one singular
Lagrangian planc, the cquilibrium x = 0 is almost surely unstablc.

Proof. Sufficiency follows from theory of normal Williamson forms [5]. If the non-degenerate system
(1.1) is completely unstable, the spectrum of the operator 4 contains either real parts *a(a > 0) or
compliex quadruplets +a+ib (a, b > 0). When that is the case the Hamiltonian splits into a sum of partial
Hamiltonians corresponding to the pairs and quadruplets, and system (1.1) itself is a direct product of
Hamiltonian subsystems whose Hamiltonians are these partial Hamiltonians. As pointed out in Section
3, in the unstable case the indices of inertia of the partial Hamiltonians cqual half the dimensions of
the corresponding phase spaces. It turns out that each of these subsystems has a singular Lagrangian
plane. Indeed, the partial Hamiltonian of a pair of rcal eigenvalucs *a is

apq (5.1)

and there are therefore two such planes: p = 0 and g = 0. The following partial Hamiltonian corresponds
to a quadruplet of eigenvalues +a+ib

—a(piq: + P292) + (P19, - P24,) (5.2)

Here there are again two singular Lagrangian planes: p; = p, = 0 and q; = ¢, = 0. The required singular
Lagrangian planes of system (1.1) are the dircct products of the singular Lagrangian planes of its
subsystems.

We will now prove necessity. In normal canonical Williamson coordinates, Hamiltonian of a system
with simple eigenvalues is

(KP,Q)+(Jg, P)+(Ip, q) (5.3)
where P and Q are sets of canonical variables corresponding to the real pairs and complex quadruplets
of eigenvalues of A, and the canonical variables p and g correspond to the pairs of pure imaginary

eigenvalues. The matrix J is diagonal with different diagonal elements. We shall look for Lagrangian
singular planes in the form

1wl

p q

where M and M) are certain symmetric matrices. Substituting these expressions into formula (5.3) for
the Hamiltonian, we obtain a quadratic form in the coordinates Q and g

(RQ, Q) +(5Q,9) +(Tq,9)

M, N

N M,

wherc T = M,JM, + J. If this form is identically zero, then, in particular, 7' = 0. Hence we obtain a
quadratic matrix equation for M,

MyJM, = —J (54)

However, by Theorem 2, this equation is contradictory, since all the clements of the diagonal matrix J
are different. The casc in which the equation of the Lagrangian plane is not solvablc for momenta is
considered as in the proof of Theorem 2.

Theorem 4 can be generalized to the case of multiple real pairs and complex quadruplets of
eigenvalues of A, provided the multiple pairs of pure imaginary eigenvalues do not have Jordan cells.
In that case, the conditions for the existence of singular Lagrangian planes reduce to the conditions
for matrix equation (5.4) to be solvable, which were described in Theorem 3. Thus, the only case still
not considered is that of multiple pairs of pure imaginary eigenvalues with non-trivial Jordan cells.
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Theorem 5. If system (1.1) is completely unstable and the eigenvalues of 4 are simple, then the number
of distinct k-dimensional singular Lagrangian planes is

plk+ 02 (5.5)

where r is the real degree of instability of system (1.1).

Since k = u and the numbers u, r have the same parity, (k + r)/2 is an integer. Formula (5.5) links
the number of pairs of real eigenvalues of the operator 4 of a completely unstable system with the
number of intersections of submanifolds L and S of the Grassman manifold G.

Proof. We will first consider the case in which all the eigenvalues of 4 are real: £, A, # 0. In particular,
r = k. Then the Hamiltonian will be a sum of partial Hamiltonians of the form (5.1). A linear canonical
transformation converts this function to the form

k P 2 q 2
J 4
Z xl—z— (5'6)
i=1
Since A; # 0, the index of inertia of the quadratic form (5.6) is obviously equal to k. We will seek the

Lagrangian singular planes in the form p = Mg, wherc M is a symmetric kK x k matrix satisfying thc
matrix equation

MIM = J, J = diag(A, ..., A) (5.7)
This equation is similar to Eq. (3.4) and can be solved in the same way. Since no two of the numbers
Ay, ..., M are equal, the matrix M w1ll be diagonal: M = diag(m;, ... , m). Consequently, Eq. (5.7)
splits mto k independent relations m ])\] Aj, 1 <j < k. Since A; # 0, it follows that m; = %1, Thus, we
have 2¢ different Lagrangian singular planes

A=A{pq:pj=mq,lsj<k}
These planes differ from one another in the combinations of signs in the equations p; =

In the general case, when the spectrum of A contains complex quadruplets, there w111 be functions

of the form (5.2) among the partial Hamiltonians. In that case, too, the Hamiltonian reduces to the

form of (5.6), but the corresponding canonical transformation will be complex.
We first apply a canonical transformation

Py = (py—ip)/2, Q) = (g, +ig)/\2

Py = (p +ipy)IN2, Q, = (q, - ig))I2
In the new variables P, Q, the partial Hamiltonian (5.2) becomes

AP,Q, +AP,Q0,, A =-a-ib, A= -a+ib. (5.8)
Further, the linear canonical transformation P, Q — u, v, defined by
P,=(uj+0)/42, Q= (-uj+v)LJ2
converts Hamiltonian (5.8) to the form of (5.6),
AV! - u3)2 + (V) —ul)I2

Since no two of the eigenvalues A; are equal, the Lagrangian singular planes are again defined by
equations of the form

2
p=%q. v =mu, Vv, =mu, m;=1
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But the equations v; = u; and v, = —u,, as well as v; = -1, and v, = u,, define non-real Lagrangian
planes. On the other hand, the equations v; = »; and v; = —; (j = 1, 2) definc real Lagrangian singular
planes g, =g, =0andp; = p, =0, respectlve{y, for the system with partial Hamiltonian (5.2).

Thus, the existence of a complex quadruplet in the spectrum of the Operator A halves the number
if Lagrangian singular planes. Consequently, the exponent in formula (5.5) equals k — (k - 2)/2 =
{k + 2)/2, which it was required to prove.

Corollary. If the operator A has simple eigenvalues, the mamfolds S and L are cither disjoint or the
number of their points of intersection lies in the range [2%, 2],

The lower limit 22 corresponds to the case in which all the eigenvalues are combined in complex
quadruplets.

Remark. If a completely unstable system has equal eigenvalues, then the number of different singular Lagrangian
planes may be reduced. Let us consider as an example the case in which k = 2 and a pair of real eigenvalues with
non-zero Jordan cell cxists. The classical method of |5] reduces the Hamiltonian to the form a(pyq; + pxgs) +
P1g2- It can be shown that here there are only three Lagrangian singular planes

Pr=p,=0 ¢, =¢,=0, p=¢q,=0

6. SOLUTIONS OF THE QUADRATIC MATRIX EQUATION

Let us find the conditions for Eq. (1.5) to be solvable for the symmetric matrix D. Put P = -M?, were
M = diag(l, ..., W), with all ; > 0. We shall look for solutions in the form of power series in a parameter
g, replacing I by €I, and then put € = 1. Thus,

D = Do+€Dl+82D2+... (6.1)
where the coefficients Dy, j = 1, are found successively {rom the recurrent relations
DyD, + DDy + (T'Dy- D)2 = 0
DD, + D,Dy+ D, +([D,-D,T)/2-T2/4 = 0 (6.2)
DyD; + D3Dy + D, D, + D,D, +(T'D, - D,I')/2 = 0

The unperturbed matrix Dy satisfies the simple matrix equation D} = M?. 1t has 2* distinct solutions:
Dy = diag(xp,, ... , *). The solutions differ in the combinations of signs of the diagonal elements.
This simple observation corresponds to the conclusion of Theorem 5: when there are no gyroscopic
forces, all the eigenvalues of system (1.3) are real if P < Q.

Thus, let Dy = diag(d,, ... , dy), where d; = * ;.

Lemma 1. d; + d;# O for all 1 <i,j =< k, then the equation DyX + XD, = Y is solvable for X in
the class of symmetric matrices, with

IXI <clvl, c<max|d,+d)” (6.3)

where ||+|| is any matrix norm.
Indeed, if Y = |]y;]| and X = ||x;]|, then

x; = y,l(d;+d))
Note that the condition of the lemma is surely satisfied if no two of the numbcrs yy, ... , H arc equal.
It also holds in the case when Dy = M or Dy = -M.

Lemma 1 guarantees the solvability of the sequence of relations (6.2) with respect to Dy, D, ... . Let
D, be a solution of the first equation in the sequence (6.2). Put

ID,~-T72| =d, |D,+T/2| =d", 2d=d"+d
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The other equations of the sequence may be written in the form

DD, + D,Dy+ (D, +T/2)(D,-T/2) = 0
DD+ DyDy + (D, +T/2)D, + Dy(D, ~T/2) = 0

(6.4)
DD, + D,Dy+ D} + (D, +T/2)D, + Dy(D,~T/2) = 0
Hence we obtain successively
IDy S cd*d sc(d* +d)'14 = cd*
IDy| c|Dy(d* +d) < 2c%d”
ID] € %™
There is a recurrent rule for calculating the coefficients x,,, m = 1:
K =1, k3 =2, x4 = K§+2K3, K5 = 2K,K3 + 2K,
s (6.5)
Ke = K3+ 2K,K, + 2K, ...
We introduce the function
g = ¥ x.2" k=1 (6.6)

Lemma 2. The function f satisfies the equation f* = f-z.
The proof follows at once from formulae (6.5).
Thus,

g(z) = [1-(1-42)"12

and consequently, the radius of convergence of the power series (6.6) is 1/4. This implies that when
€ = 1 the original series (6.1) is convergence if

cd<1/4 (6.7)

In fact thcre are 2¥ conditions (6.7) (depending on the number of solutions of thc initial matrix
equation D = —P). Each of them is surely satisfied if the norm ||T|] is small. Indeed, by the first equation
of (6 2) and Lemma 1, the norm ||D; || is small together with ||T||. Next,d* < ||D,]| + ||T'||/2. Thus

=d " +d)2-0,if ||T|| - 0.

Theorem 6. Suppose no two of the numbers p;, ... , i are equal and all 2* conditions (6.7) are satisfied.
Then all the eigenvalues of the linear system (1.3) are real.

Proof. We again replace I' by eI” and let the parameter € vary in the range [0, 1]. Then the coefficients
of the characteristic equation

A2E+rer+ Pl =0 (6.8)

will be analytic functions of €. We first observe that, for almost all £ € [0, 1] (except possibly a finite
number), the roots of the characteristic equation are all simple.

Indeed, the discriminant of the characteristic polynomial (6.8) is an entire function of all its coefficients.
Consequently, the discriminant will be an analytic function of the real parameter € which is non-zero
when £ = 0 (because, when there are no gyroscopic forces, the roots of Eq. (6.8) are different real pairs
1;). Hence the discriminant may vanish only at finite number of points in the range [0, 1].
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Now, by conditions (6.7), the 2* solutions of the matrix equation (1.5) (with I' replaced by €I') are
analytic matrix functions of € in the range [0, 1). These functions are pairwise distinct, since when
e = 0 their values are equal to the 2* distinct solutions of the matrix equation Dj = M2 Consequently,
for almost all € e [0, 1], Eq. (1.5) admits of exactly 2* distinct solutions which are symmetric k x k
matricces.

Combining these arguments and applying Theorems 4 and 5, we conclude that for almost all € all
the roots of the characteristic equation (6.8) split into k different real pairs. Since these roots are
continuous functions of the parameter &, it follows that when & = 1 they must still be real.

Example. It turns out that complex quadruplets of eigenvalues in a system with gyroscopic forces
(1.3) already arise at k = 2. Put

-a 0
0 -»

0y
_YO

= , = , a>b>0

If y = 0, then there are two real pairs +a, b of eigenvalues. All |y| increases, they begin to move
toward each other, coming together at points +(ab)", when [y| = va - \b. Next they leave the real
axis, and when vz — —\b < |y| < Va + Vb there is a complex quadruplet of eigenvalues. When |y| =
va + b, the eigenvalues collide with the points +i(ab)"* of the imaginary axis. As |y| continues to

move, they diverge along the imaginary axis and the equilibrium becomes stable.
We will now determine the boundary beyond which the eigenvalues cease to be real, as defined by
irequality (6.7). Put

D, = diag(+/a, +./b)
Then

qnr(ﬁz +A/b)
D, = 2(Ja - Jb) .1 69)

, C

Aar B  a-b
2(Ja-b)

and consequently

d = d* = lylJal(Ja- Jb)

Thus, inequality (6.7) yields the sufficient condition for the eigenvalues to be real:

iyl < (Ja— Jb) /(4 Ja) (6.10)

It is clear that the right-hand side of this inequality does not exceed Va — Vb, if a = b.
Note that if it is assumed that equality (6.9) holds, then inequality (6.7) yields the condition

iyl < (Ja+ Jb) (4 Ja) (6.11)

which includes condition (6.10). However, by Theorem 6, the interval in which the eigenvalues are real
reduces to the intersection of the intervals (6.10) and (6.11). By Theorem 1, inequality (6.10) is a sufficient
condition for system (1.3) not to be strongly stable.
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