УДК 531.36

© 2004 г. В. В. Козлов

ЛИНЕЙНЫЕ СИСТЕМЫ С КВАДРАТИЧНЫМ ИНТЕГРАЛОМ И СИМПЛЕКТИЧЕСКАЯ ГЕОМЕТРИЯ ПРОСТРАНСТВ АРТИНА

Установлены новые связи между спектром линейной системы и индексами инерции ее квадратичного интеграла. Подробно изучается случай, когда положительный и отрицательный индексы инерции квадратичного интеграла совпадают. Найдены условия, при которых сингулярные плоскости будут лагранжевыми относительно некоторой естественной симплектической структуры. Они тесно связаны с условиями сильной устойчивости линейной системы. Результаты общего характера применяются к классической задаче о гироскопической стабилизации.

1. Линейные системы с квадратичным интегралом и пространства Артина. Рассмотрим линейную систему дифференциальных уравнений

\[\dot{x} = Ax, \quad x \in \mathbb{R}^n \] \hspace{2cm} (1.1)

с невырожденным оператором \(A(|A| \neq 0) \), допускающую первый интеграл в виде невырожденной квадратичной формы

\[f = (Bx, x)/2, \quad |B| \neq 0 \] \hspace{2cm} (1.2)

Было показано [1], что уравнения (1.1) гамильтоновы. Симплектическая структура \(\omega \) задается кососимметричной матрицей

\[\Omega = BA^{-1}(\omega(x', x'')) = (\Omega x', x'') \]

а функция Гамильтона совпадает с квадратичной формой \((K\Phi)f \):

\[i_v \omega = \omega(v, dx) = df, \quad v = Ax \]

В частности, \(n \) четно \((n = 2k)\) и спектр оператора \(A \) симметричен относительно вещественной и мнимой осей. Последний факт отмечен ранее в [2].

Особый интерес представляет случай, когда индекс инерции \(K\Phi \) (1.2) равен \(n/2 = k \). Если \(K\Phi \) (1.2) принимать в качестве псевдоеевклидовой метрики в \(\mathbb{R}^n \), то \((\mathbb{R}^n, f)\) будет пространством Артина [3]. С другой стороны, в \(\mathbb{R}^n \) имеется естественная симплектическая структура \(\omega \). Это позволяет развить симплектическую геометрию пространства Артина. Первые шаги сделаны в [1], где при \(n = 4 \) вопрос о расположении вполне сингулярных плоскостей относительно трехмерного семейства лагранжевых плоскостей был увязан со строением спектра и собственных векторов оператора \(A \). Некоторые из результатов [1] распространяются ниже не случаев произвольного \(n \).

Напомним, что \(k \)-мерная плоскость \(\Lambda^k \) (содержащая точку \(x = 0 \)) называется лагранжевой, если \(\omega(x', x'') = 0 \) для всех \(x', x'' \in \Lambda \). Плоскость \(\Lambda^k \) называется сингулярной, если она целиком лежит в изотропном конусе \(\{f(x) = 0\} \). Наконец, плоскость \(\Lambda \) называется инвариантной, если проходящая через каждую точку \(\Lambda \) траектория системы (1.1) целиком лежит в \(\Lambda \).
Предложение 1. Сингулярные лагранжевы плоскости являются инвариантными плоскостями.

Доказательство. Надо доказать, что если \(x \in \Lambda \), то \(\dot{x} = Ax \in \Lambda \). Это означает, что \(\omega(Ax, z) = 0 \) для всех векторов \(z \in \Lambda \). Однако

\[
\omega(Ax, z) = (BA^{-1}(Ax), z) = (Bx, z)
\]

с другой стороны,

\[
2(Bx, z) = (B(x + z), x + z) - (Bx, x) - (Bz, z) = 0
\]

ввиду предположения о сингулярности \(\Lambda \). Что и требовалось.

Аналогично доказывается, что инвариантные лагранжевы плоскости являются сингулярными плоскостями.

Пример. Линеаризованные уравнения движения механической системы с \(k \) степенями свободы, находящейся под действием потенциальных и гироскопических сил, имеют вид

\[
\dot{z} + \Gamma z + Pz = 0, \quad z \in \mathbb{R}^k
\]

Здесь \(\Gamma^T = -\Gamma \) — матрица гироскопических сил, а \(V = (Pz, z)/2 \) — потенциальная энергия. Уравнения (1.3) представимы в виде уравнений Лагранжа с лагранжианом

\[
L = \frac{1}{2}(\dot{z}, \dot{z}) + \frac{1}{2}(\dot{z}, \Gamma z) - \frac{1}{2}(Pz, z)
\]

С помощью преобразования Лежандра можно перейти к уравнениям Гамильтона с квадратичным гамильтонианом

\[
H = \frac{1}{2}(\dot{z}, \dot{z}) + V = \frac{1}{2}(y, y) - \frac{1}{2}(y, \Gamma z) + \frac{1}{2}(Pz, z) - \frac{1}{8}(z, \Gamma^2 z)
\]

где \(y = \dot{z} + \Gamma z/2 \). Ясно, что индекс инерции интеграла \(H \) будет равен \(k = n/2 \), если потенциальная энергия \(V \) имеет в положении равновесия \(z = 0 \) строгий максимум (матрица \(P \) отрицательно определена).

Пусть \(\Lambda = \{y = Dz\} \) — \(k \)-мерная плоскость в \(\mathbb{R}^{2k} \), содержащая состояние равновесия \(z = y = 0 \). Эта плоскость будет сингулярной, если

\[
(Dz, Dz) - (Dz, \Gamma z) + (Pz, z) - (z, \Gamma^2 z)/4 = 0
\]

Другими словами,

\[
\frac{D^T D + DD^T}{2} - \frac{D^T \Gamma - \Gamma D}{2} + P - \frac{\Gamma^2}{4} = 0
\]

Плоскость \(\Lambda \) лагранжева (относительно стандартной симплектической структуры в \(\mathbb{R}^{2k} \), если матрица \(D \) симметрична. В этом случае уравнение (1.4) слегка упрощается:

\[
D^2 - \frac{D^T \Gamma - \Gamma D}{2} + P - \frac{\Gamma^2}{4} = 0
\]

Как известно (см. [4]), оно является критерием инвариантности плоскости \(\Lambda \). В частности, лагранжева сингулярная плоскость будет инвариантной (как и утверждает предложение 1).

2. Степени устойчивости и индексы инерции. Степень устойчивости \(s \) системы (1.1) назовем количество пар чисто мнимых корней характеристического уравнения оператора \(A \) (считая их кратности). Степень неустойчивости и назовем количест-
во корней (с кратностями) характеристического уравнения оператора A, лежащих в правой комплексной полуплоскости. Можно ввести еще вещественную степень неустойчивости r как число положительных вещественных корней характеристического уравнения. Поскольку спектр оператора инвариантен при отражении относительно вещественной оси, то

$$u \equiv r \mod 2$$

(2.1)

Пусть $i^*(i^-)$ — положительный (отрицательный) индекс инерции квадратичной формы (1.2). Ввиду ее невырожденности, $i^* + i^- = n$. Очевидно, что $i^* - i^-$ всегда четно. Было установлено [1] сравнение

$$u \equiv i^- \mod 2$$

(2.2)

Ввиду соответства (2.1) оно эквивалентно сравнению $r \equiv i^- \mod 2$. В частности, если i^- нечетно, то равновесие $x = 0$ системы (1.1) неустойчиво. Это утверждение обобщает классическую теорему Томсона о невозможности гироскопической стабилизации равновесия системы (1.3) с нечетной степенью неустойчивости по Пуанкаре.

Пример. Пусть система (1.1) и интеграл (1.2) зависят от параметра ε и пусть при малых $\varepsilon < 0$ КФ (1.2) положительно определена ($i^- = 0$); при $\varepsilon = 0$ она становится вырожденной, а при малых $\varepsilon > 0$ ее индекс инерции i^- равен 1. Тогда при переходе параметра ε через нуль система (1.1) теряет устойчивость. Отметим, что этот принцип смены устойчивости не зависит от размерности фазового пространства, поэтому (при надлежащих естественных условиях) он справедлив и в бесконечномерном случае.

Дополним сравнение (2.2) простым утверждением, относящимся к степени устойчивости.

Теорема 1. Степень устойчивости четна в том и только в том случае, когда $i^* \equiv i^- \mod 4$.

Следствие. Если разность индексов инерции $i^* - i^-$ не делится на 4, то имеется хотя бы одна пара чисто мнимых корней.

Доказательство теоремы 1 использует тот факт, что $|A||B| > 0$. Действительно, матрица $\Omega = BA^{-1}$ невырождена и кососимметрична. Следовательно, n четно и $|\Omega| > 0$. Так как спектр оператора A симметричен относительно вещественной и мнимой осей, его характеристический многочлен $|A - \lambda E|$ на самом деле является многочленом от $\mu = \lambda^{\frac{n}{2}}$, степень $n/2 = k$. Он имеет вид

$$g(\mu) = \mu^k + \ldots + g_k, \quad g_k = |A|$$

Поскольку $K_F (1.2)$, по предположению, невырождена, $i^* = k + m$, $i^- = k - m$ и, следовательно, $i^* - i^- = 2m$. Ясно, что $\text{sign} |B| = (-1)^i^- = (-1)^{k-m}$. Так как $|A||B| > 0$, то $\text{sign} g_k = (-1)^{k-m}$.

Пусть k четно. Тогда $\mu^k \to +\infty$ при $\mu \to -\infty$ и $\text{sign} g_k = (-1)^m$. Следовательно, при четном (нечетном) m число s отрицательных корней (с кратностями) многочлена g четно (нечетно).

Пусть теперь k нечетно. Тогда $\mu^k \to -\infty$ при $\mu \to -\infty$ и $\text{sign} g_k = (-1)^m$. Следовательно, при четном (нечетном) m число s также четно (нечетно). Что и требовалось доказать.

Пример. Пусть система (1.3) имеет две степени свободы ($k = 2$) и степень неустойчивости по Пуанкаре равна единице. Тогда $i^* = 3$, $i^- = 1$ и, следовательно, $i^* - i^-$ не делится на 4. Таким образом, по теореме 1 всегда имеется пара чисто мнимых корней. По теореме Томсона остальные два корня будут вещественными числами противоположных знаков.
В типичном случае, когда собственные числа оператора A различны, можно указать простые соотношения между степенями устойчивости и неустойчивости и индексами квадратичного интеграла, из которых вытекают сформулированные выше утверждения. Поскольку система (1.1) гамильтонова, по теореме Вильямсона \mathbb{R}^n распадается в прямую сумму косоортогональных (относительно билинейной формы ω) инвариантных подпространств, так что интеграл (1.2) представляется в виде сумм КФ на этих подпространствах. Эти КФ обычно называются частичными гамильтонианами. Простой вещественной паре собственных чисел $\alpha, -\alpha$ соответствует частичный гамильтониан apq с сигнатуру $++$, чисто мнимой паре $\pm ib$ — гамильтониан $\pm b(p^2 + q^2)/2$ с сигнатуру $++$ или $---$, четверке собственных чисел $\pm \pm ib$ — гамильтониан $\pm a(p_1 q_1 + p_2 q_2) + b(p_1 q_2 - p_2 q_1)$ с сигнатуру $++--$.

Пусть $s^+(s^-)$ — число пар чисто мнимых собственных значений, которым отвечают частичные гамильтонианы с сигнатуру $++(- -)$. Очевидно, $s^+ + s^- = s$. Ввиду невырожденности КФ f

$$u = 2s^+ = i^+, \quad u + 2s^- = i^- \quad (2.3)$$

Отсюда сразу вытекает сравнение (2.2). Вычитая второе соотношение (2.3) из первого, получаем

$$2(s^+ - s^-) = i^+ - i^- \quad (2.4)$$

Так как четности чисел $s^+ - s^-$ и $i^+ - i^-$ совпадают, из равенства (2.4) получаем заключение теоремы 1. Из равенства (2.4) вытекает также полезное неравенство

$$|i^+ - i^-| \leq 2s \quad (2.5)$$

Пример. При выполнении условий справедливости принципа смены устойчивости появляется простая пара вещественных собственных чисел, а остальные собственные числа остаются чисто мнимыми. Действительно, здесь $\bar{i} = 1, i^+ = n - 1$. Следовательно, согласно неравенству (2.5), $s \geq k - 1$, где $k = n/2$. Таким образом, $s = k - 1$.

Было бы полезным распространить эти наблюдения на случай кратных корней с нетривиальными корневыми клетками.

3. **Сильная устойчивость.** Равновесие $x = 0$ системы (1.1) назовем сильно устойчивым, если собственные числа оператора A чисто мнимы и различны. Свойство сильной устойчивости сохраняется при малом возмущении системы (1.1). Ясно, что сильно устойчивое равновесие будет устойчивым по Ляпунову. Обратное, конечно, неверно. Однако условие совпадения чисто мнимых собственных чисел оператора A определяют границу области устойчивости.

Вернемся к исследованию случая, когда псевдоевклидово пространство (\mathbb{R}^n, f) будет артичным ($\bar{i} = i^+$). Совокупность всех $k = n/2$-мерных плоскостей в \mathbb{R}^n, проходящих через точку $x = 0$, образует граммансов гладкое многообразие G размерности k^2. Множество всех k-мерных лагранжевых (сингулярных) плоскостей составляет гладкое подмногообразие $L(S)$ в G размерности $k(k + 1)/2$ $(k(k - 1)/2$ соответственно). Так как $\dim G = \dim L + \dim S$, естественно поставить вопрос об условиях пересечения подмногообразий L и S.

Теорема 2. Если равновесие системы (1.1) сильно устойчиво, то L и S не пересекаются.

Для случая $n = 4$ этот результат отмечен ранее [1]. Теорема 1 становится неверной, если заменить сильную устойчивость обычной устойчивостью по Ляпунову (примеры указаны в [1]).

Следствие. Если найдется сингулярная лагранжева $n/2$-мерная плоскость, то равновесие $x = 0$ не будет сильно устойчивым.
Доказательство. Так как собственные числа оператора A чисто мнимы и различны и система (1.1) гамильтонова, находятся канонически сопряженные координаты $p_1, ..., p_k, q_1, ..., q_k$ ($2k = n$), в которых функция Гамильтона имеет вид

$$f = \frac{\lambda_1 (p_1^2 + q_1^2)}{2} + \ldots + \frac{\lambda_k (p_k^2 + q_k^2)}{2}$$

(3.1)

где $|\lambda_j|$ — частота малых колебаний, причем $\lambda_i^2 \neq \lambda_j^2$ (см., например, [5]). Гамильтониан (3.1) — это КФ (1.2), представленная в новых переменных. В частности, индексы инерции КФ (1.2) и (3.1) совпадают. Так как линейное пространство \mathbb{R}^{2k} с псевдевьквадратной метрикой (3.1) является пространством Артина, количество положительных и отрицательных коэффициентов λ_j в соотношении (3.1) равны между собой. В частности, k четно, и поэтому размерность фазового пространства должна делиться на 4.

Замечание. На первый взгляд, последний вывод противоречит примеру механической системы с гироскопическими силами и нечетным числом степеней свободы (см. разд. 1). Однако если $P < 0$ (только в этом случае полная энергия порождает структуру пространства Артина), то равновесие системы (1.3) будет неустойчивым согласно классической теореме Томсона (ввиду нечетности степени неустойчивости Пуанкаре).

Пусть Λ — лагранжева плоскость. Сначала рассмотрим случай, когда уравнение Λ можно представить в виде, разрешенном относительно импульсов:

$$p = M q$$

(3.2)

где $M = ||m_{ij}||$ — симметричная $(k \times k)$-матрица. Предположим, что плоскость Λ сингулярная. Подставляя соотношение (3.2) в выражение для функции Гамильтона (3.1), переходим к уравнению

$$(Jq, q) + (JMq, Mq) = 0$$

(3.3)

где $J = \text{diag}(\lambda_1, \ldots, \lambda_k)$. Покольку КФ-форма (3.3) должна обращаться в нуль при всех $q \in \mathbb{R}^k$,

$$MJM = -J$$

(3.4)

Отметим, что, если уравнение (3.4) заменить более общим $M^TJM = -J$, оно всегда разрешимо в более широком классе невырожденных $(k \times k)$-матриц (поскольку индекс инерции КФ (Jq, q) равен $k/2$). Надо показать, что это уравнение не имеет симметрических решений.

Так как $\lambda_j \neq 0$, то $|J| \neq 0$. Следовательно, $|M| \neq 0$, в частности, матрица M имеет обратную. Умножая равенство (3.4) слева и справа на M^{-1}, получаем

$$M^{-1}JM^{-1} = -J$$

(3.5)

Перемножая левые и правые части равенств (3.4) и (3.5), приходим к соотношению

$$M^{-2}JM^{-1} = J^2$$

или, что то же самое, матрицы M и J^2 коммутируют: $MJ^2 = J^2M$.

Покажем, что матрица M тоже диагональная. Действительно, пусть

$$J^2 = \text{diag}(\mu_1, \ldots, \mu_k), \quad \mu_j = \lambda_j^2$$

Тогда

$$MJ^2 = \|\mu, m_{ij}\|, \quad J^2M = \|\mu, m_{ij}\|$$

Следовательно, $\mu, m_{ij} = \mu, m_{ij}$ для всех i, j. Поскольку $\mu_i \neq \mu_j$ ($i \neq j$), то $m_{ij} = 0$ при всех $i \neq j$.
Итак, $M = \text{diag}(m_1, ..., m_k)$. Но тогда матричное уравнение (3.4) сводится к противоречивым соотношениям $\lambda_j m_j^2 = -\lambda_j$. Поэтому уравнение (3.4) вообще не имеет симметричных решений.

Рассмотрим теперь случай, когда уравнение лагранжевой плоскости не представимо в виде (3.2), разрешенном относительно импульсов. В самом общем случае всегда можно выбрать некоторый набор канонических координат

\[p_{i_1}, ..., p_{i_m}, q_{j_1}, ..., q_{j_{k-m}} \]

(3.6)

так что

1) $(i_1, ..., i_m; j_1, ..., j_{k-m})$ — разбиение множества $(1...n)$ на две непересекающиеся части,

2) уравнение лагранжевой k-мерной плоскости Λ имеет вид

\[p_{i_1} = m_{1,1} q_{i_1} + ... + m_{1,m} q_{i_m} + m_{1,m+1} p_{j_1} + ... + m_{1,k} p_{k-m} \]

\[-q_{j_{k-m}} = m_{n,1} q_{i_1} + ... + m_{k,m} q_{i_m} + m_{k,m+1} p_{j_1} + ... + m_{k,k} p_{k-m} \]

(3.7)

где $|m_{r,s}|$ — симметрическая $(k \times k)$-матрица. Отметим, что одна из двух непересекающихся частей множества индексов 1, ..., n может быть пустой.

Считая плоскость Λ сингулярной, подставим выражения (3.7) в формулу (3.1) для гамильтона и приравняем полученную КФ нулю. В результате для симметричной матрицы M снова получим уравнение (3.4), которое (как показано выше) не имеет симметричных решений, если среди чисел $\lambda_1^2, ..., \lambda_k^2$ нет равных. Теорема 2 доказана полностью.

4. Некоторые обобщения. Рассмотрим более общий случай, когда все собственные числа невырожденного оператора Λ чисто мнимые и (в случае кратных собственных значений) без жордановых клеток. Этот случай отвечает свойству устойчивости по Ляпунову равновесного состояния системы (1.1). В некоторых подходящих канонических координатах $p_1, ..., p_k, q_1, ..., q_k$ функция Гамильтона снова имеет вид (3.1). Без ущерба для общности можно считать, что

\[|\lambda_1| \leq |\lambda_2| \leq ... \leq |\lambda_k| \]

(4.1)

По-прежнему считаем, что индекс инверции невырожденной КФ (3.1) равен k. Опишем все случаи, когда имеется лагранжева сингулярная k-мерная плоскость.

Пусть

\[\mu_1 = |\lambda_1| = ... = |\lambda_k|, \mu_2 = |\lambda_{k+1}| = ... = |\lambda_k| \]

(4.2)

Линейное пространство \mathbb{R}^{2k} разбивается в прямую сумму m подпространств $\Pi_1, ..., \Pi_m$ размерности $k_1, k_2 - k_1, ..., k - k_{m-1}$ соответственно; пространство Π_j определяется линейными соотношениями

\[p_1 = q_1 = ... = p_{k_j-1} = q_{k_j-1} = 0, \quad p_{k_j+1} = q_{k_j+1} = ... = p_k = q_k = 0. \]

Ясно, что все эти подпространства инвариантны относительно фазового потока линейной гамильтоновой системы с гамильтонаном (3.1) (следовательно, и исходной системы (1.1)).
Теорема 3. Система (1.1) с интегралом (1.2) допускает сингулярно лагранжеву плоскость тогда и только тогда, когда индекс инерции ограничения \(\mathbf{K} \Phi f \) на каждую плоскость \(\Pi_j \) равен \(\dim \Pi_j / 2 \).

В частности, размерности подпространства \(\Pi_1, \ldots, \Pi_k \) должны быть кратны четырем. Если неравенства в цепочке (4.1) строго, то из теоремы 3 вытекает теорема 2.

Доказательство. Проверим сначала достаточность условий теоремы 3. Для этого в свою очередь достаточно рассмотреть случай, когда \(n = 4 \) и гамилтониан имеет вид

\[
a(p_1^2 + q_1^2)/2 - a(p_2^2 + q_2^2)/2, \quad a > 0
\]

(4.3)

Как уже ранее отмечалось, в общем случае \(k \) кратно 4 и матрицу \(M \) из уравнения (3.4) можно найти в виде блочной матрицы, по диагонали которой находятся симметричные \((4 \times 4)\)-матрицы, задающие уравнения лагранжевой сингулярной плоскости для системы с гамилтонианом (4.3).

Опишем все двумерные сингулярные лагранжевы плоскости для гамилтоновой системы с гамилтонианом (4.3):

\[
\Lambda_{\alpha}^\pm: p_1 = \pm h q_1 \pm c h q_2, \quad p_2 = \pm c h q_1 + \pm h q_2
\]

\[
\Lambda_{\infty}^\pm: p_1 = \pm q_2 \quad q_1 = \mp q_2
\]

Здесь \(\alpha \) – вещественный параметр. При \(\alpha \to \pm \infty \) плоскость \(\Lambda_{\alpha}^\pm \), очевидно, стремится к лагранжевой сингулярной плоскости \(\Lambda_{\infty}^\pm \). В действительности объединение двух непрерывных семейств плоскостей \(\Lambda_{\alpha}^\pm \), \(\alpha \in \mathbb{R} \) и двух особых плоскостей \(\Lambda_{\infty}^\pm \) в четырехмерном грасмановом многообразии \(G \) представляет топологическую окружность \(T^4 \) (как гипербола в проективной плоскости является на самом деле овалом).

В общем случае \(k = 4s, s \in \mathbb{N} \) и лагранжевы сингулярные плоскости образуют \(s \)-мерное многообразие, которое параметризуется точками \(s \)-мерного тора \(T^s \).

Необходимость доказывается так же, как и теорема 2. Надо решить матричное уравнение (3.4), из которого вытекает, в частности, что матрица \(M \) и \(J^2 \) коммутируют. Пусть \(J^2 = \text{diag}(\lambda_1^2, \ldots, \lambda_k^2) \), причем числа \(\lambda_j \) удовлетворяют условиям (4.2). Тогда \(M = \text{diag}(M_1, M_2, \ldots, M_m) \), где \(M_1, M_2, \ldots, M_m \) – квадратичные симметричные матрицы порядка \(k_1, k_2 - k_1, \ldots, k - k_{m-1} \) соответственно. Этот факт сразу вытекает из сопоставления явного вида матриц \(MJ^2 \) и \(J^2 M \).

Таким образом, задача сводится к исследованию разрешимости уравнений

\[
M_j J_j M_j = -J_j, \quad M_j^T = M_j
\]

(4.4)

на каждом из подпространств \(\Pi_j \). Отметим, что матрица \(J_j \) в (4.4) имеет диагональный вид, причем каждый диагональный элемент равен одному из чисел \(\pm \lambda_j (\lambda_j \neq 0) \).

Остаётся заметить, что количества положительных и отрицательных диагональных элементов совпадают, иначе (согласно закону инерции) с помощью линейной подстановки, определяемой матрицей \(M_j, \mathbf{K} \Phi (J_j x, x), x \in \Pi_j \) нельзя привести к \(\mathbf{K} \Phi - (J_j x, x) \).

Теорема доказана.

5. Полная неустойчивость. Систему (1.1) с максимально возможным значением степени неустойчивости \(u = n/2 \) назовем вполне неустойчивой. В этом случае спектр оператора \(A \) вообще не имеет чисто мнимых собственных значений.

Основной результат составляет
Теорема 4. Если все собственные значения оператора A простые, то лагранжева сингулярная плоскость существует тогда и только тогда, когда система (1.1) вполне неустойчива.

Совпадение собственных значений — явление исключительное, поэтому, если найдется хотя бы одна сингулярная лагранжева плоскость, то почти наверное равновесие \(x = 0 \) будет неустойчивым.

Доказательство. Достаточность условий теоремы 4 вытекает из теории нормальных форм Вильямсона [5]. Если невырожденная система (1.1) вполне неустойчива, то спектр оператора A содержит либо вещественные пары \(\pm a (a > 0) \), либо комплексные четверки \(\pm a \pm ib (a, b > 0) \). При этом гамильтониан распадается в сумму частичных гамильтонианов, отвечающих этим парам и четверкам, а сама система (1.1) будет прямым произведением гамильтоновых подсистем, функции Гамильтона которых — эти частичные гамильтонианы. Как отмечено в разд. 2, в неустойчивом случае индексы инерции частичных гамильтонианов равны половине размерности соответствующих фазовых пространств. Оказывается, каждая из этих подсистем имеет сингулярную лагранжеву плоскость. Действительно, частичный гамильтониан пары вещественных собственных чисел \(\pm a \) равен

\[
apq\tag{5.1}
\]

и поэтому имеются две такие плоскости: \(p = 0 \) и \(q = 0 \). Четверке собственных значений \(\pm atib \) отвечает частичный гамильтониан

\[
a(p_1 q_1 + p_2 q_2) + b(p_1 q_2 - p_2 q_1)\tag{5.2}
\]

здесь также имеются две сингулярные лагранжевы плоскости: \(p_1 = p_2 = 0 \) и \(q_1 = q_2 = 0 \). Исключные сингулярные лагранжевы плоскости системы (1.1) — это прямые произведения указанных сингулярных лагранжевых плоскостей ее подсистем.

Докажем теперь необходимость условий теоремы 4. В нормальных канонических координатах Вильямсона функция Гамильтона системы с простыми собственными значениями имеет вид

\[
(KP, Q) + (Jq, p) + (Jp, q)\tag{5.3}
\]

Здесь \(P, Q \) — совокупность канонических переменных, отвечающих вещественным параметрам и комплексным четверкам собственных значений оператора A, а канонические переменные \(p, q \) соответствуют параметрам чисто мнимых собственных значений. Матрица J — диагональная с неравными диагональными элементами. Будем искать лагранжевые сингулярные плоскости в виде

\[
\begin{pmatrix}
M_1 & N \\
N & M_2
\end{pmatrix}
\begin{pmatrix}
Q \\
q
\end{pmatrix}
\]

gде \(M_1, M_2 \) — некоторые симметричные матрицы. Подставляя эти выражения в выражение для гамильтониана (5.3), получим КФ от координат \(Q \) и \(q \)

\[
(RQ, Q) + (SQ, q) + (Tq, q)
\]

причем \(T = M_2 J M_2 + J \). Если эта форма тождественно равна нулю, то, в частности, \(T = 0 \). Отсюда получаем квадратное матричное уравнение для \(M_2 \)

\[
M_2 J M_2 = -J\tag{5.4}
\]

Однако, по теореме 2, это уравнение противоречиво, поскольку все элементы диагональной матрицы J различны. Случай, когда уравнение лагранжевой плоскости не
разрешимо относительно импульсов, рассматривается точно так же, как и при доказательстве теоремы 2.

Теорема 4 допускает обобщение на случай кратных вещественных пар и комплексных четверок собственных значений оператора A при условии, что кратные пары число мнимых собственных значений не имеют жордановых клеток. В этом случае условия существования сингулярных лагранжевых плоскостей сводятся к условиям разрешимости матричного уравнения (5.4), которые описаны в теореме 3. Таким образом, нерассмотренным остался случай наличия кратных пар число мнимых собственных значений с нетривиальными жордановыми клетками.

Теорема 5. Если система (1.1) вполне неустойчива и собственные числа оператора A простые, то количество различных сингулярных лагранжевых k-мерных плоскостей равно

$$2^{(k + r)/2}$$

где r — вещественная степень неустойчивости системы (1.1).

Так как $k = u$ и числа u, r имеют одинаковую четность, то $(k + r)/2$ — целое. Формула (5.5) связывает количество пар вещественных собственных значений оператора A вполне неустойчивой системы с числом пересечений подмногообразий L и S гласманова многообразия G.

Доказательство. Сначала рассмотрим случай, когда все собственные числа оператора A вещественные: $\pm \lambda_j$, $\lambda_j \neq 0$. В частности, $r = k$. Тогда функция Гамильтона будет суммой частичных гамильтоанов вида (5.1). Линейным каноническим преобразованием эта функция приводится к виду

$$\sum_{j=1}^{k} \lambda_j \frac{p_j^2 - q_j^2}{2}$$

Поскольку $\lambda_j \neq 0$, индекс инерции КФ (5.6) равен, очевидно, k. Ищем лагранжевы сингулярные плоскости в виде $p = Mq$, где M — симметричная $(k \times k)$-матрица, удовлетворяющая матричному уравнению

$$MJM = J, \quad J = \text{diag}(\lambda_1, \ldots, \lambda_k)$$

Оно похоже на уравнение (3.4) и его можно решить тем же способом. Так как среди чисел $\lambda_1, \ldots, \lambda_k$ нет равных, матрица M будет диагональной: $M = \text{diag}(m_1, \ldots, m_k)$. Следовательно, уравнение (5.7) распадается на k независимых соотношений $m_j^2 \lambda_j = \lambda_j$, $1 \leq j \leq k$. Поскольку $\lambda_j \neq 0$, то $m_j = \pm 1$. Таким образом, имеем 2^k различных лагранжевых сингулярных плоскостей

$$\Lambda = \{ p, q : p_j = m_j q_j, 1 \leq j \leq k \}$$

Эти плоскости являются комбинациями знаков в уравнениях $p_j = \pm q_j$.

В общем случае, когда спектр A содержит комплексные четверки, среди частичных гамильтоанов имеются функции вида (5.2). И в этом случае гамильтоан приводится к виду (5.6), однако соответствующее каноническое преобразование будет комплексным.

Сначала применим каноническое преобразование

$$P_1 = (p_1 - ip_2)/\sqrt{2}, \quad Q_1 = (q_1 + iq_2)/\sqrt{2}$$

$$P_2 = (p_1 + ip_2)/\sqrt{2}, \quad Q_2 = (q_1 - iq_2)/\sqrt{2}$$
В новых переменных P, Q частичный гамильтониан (5.2) принимает вид

$$\lambda P_1 Q_1 + \tilde{\lambda} P_2 Q_2, \quad \lambda = -a - ib, \quad \tilde{\lambda} = -a + ib.$$

(5.8)

Далее линейное каноническое преобразование $P, Q \to u, v$ по формулам

$$P_j = (u_j + v_j)/\sqrt{2}, \quad Q_j = (-u_j + v_j)/\sqrt{2}$$

приводит гамильтониан (5.8) к виду (5.6),

$$\lambda(u_1^2 - u_2^2)/2 + \tilde{\lambda}(v_1^2 - v_2^2)/2$$

Поскольку среди собственных чисел λ_i нет равных, лагранжианы сингулярные плоскости снова задаются уравнениями вида

$$p = \pm q, \quad v_1 = m_1 u_1, \quad v_2 = m_2 u_2, \quad m_j^2 = 1$$

Однако уравнения $v_1 = u_1$ и $v_2 = -u_2$, а также $v_1 = -u_1$ и $v_2 = u_2$ задают невещественные лагранжианы плоскости. С другой стороны, уравнения $v_j = u_j$ и $v_j = -u_j (j = 1, 2)$ задают вещественные лагранжианы сингулярные плоскости $q_1 = q_2 = 0$ и $p_1 = p_2 = 0$ соответственно для системы с частичным гамильтонианом (5.2).

Таким образом, наличие комплексной четверки в спектре оператора A уменьшает вдвое число лагранжевых сингулярных плоскостей. Следовательно, показатель в формуле (5.5) равен $k = (k - 2)/2 = (k + 2)/2$. Что и требовалось.

Следствие. Если оператор A имеет простые собственные значения, то многообразия S и L либо не пересекаются, либо число их точек пересечения заключено в промежутке $[2^{k/2}, 2^k]$.

Нижняя граница $2^{k/2}$ отвечает случаю, когда все собственные числа объединены в комплексные четверки.

Замечание. Если вполне неустойчивая система имеет равные собственные значения, то число различных сингулярных лагранжевских плоскостей может уменьшиться. Рассмотрим, например, случай, когда $k = 2$ и имеется пара вещественных собственных значений с ненулевой жордановой клеткой. Согласно известному подходу [5], гамильтониан приводится к виду $-a(p_1 q_1 + p_2 q_2) + p_1 q_2$. Можно показать, что здесь имеются только три лагранжевы сингулярные плоскости

$$p_1 = p_2 = 0, \quad q_1 = q_2 = 0, \quad p_1 = q_2 = 0$$

6. Решения квадратичного матричного уравнения. Найдем условия разрешимости уравнения (1.5) относительно симметричной матрицы D. Положим $P = -M^2$, где $M = \text{diag}(\mu_1, \ldots, \mu_k)$, причем все $\mu_j > 0$. Будем искать решения в виде степенного ряда по параметру ε, заменяя Γ на $\varepsilon \Gamma$, и затем положим $\varepsilon = 1$. Итак,

$$D = D_0 + \varepsilon D_1 + \varepsilon^2 D_2 + \ldots$$

(6.1)

gде коэффициенты $D_j, j \geq 1$ последовательно находятся из рекуррентных соотношений

$$D_0 D_1 + D_1 D_0 + (\Gamma D_0 - D_0 \Gamma)/2 = 0$$

$$D_0 D_2 + D_2 D_0 + D_1 + (\Gamma D_1 - D_1 \Gamma)/2 - \Gamma^2/4 = 0$$

$$D_0 D_3 + D_3 D_0 + D_1 D_2 + D_2 D_1 + (\Gamma D_2 - D_2 \Gamma)/2 = 0$$

(6.2)

Невозвышенная матрица D_0 удовлетворяет простому матричному уравнению $D_0^2 = M^2$. Оно имеет 2^k различных решений: $D_0 = \text{diag}(\pm \mu_1, \ldots, \pm \mu_k)$. Решения различаются ком-
бинациями знаков диагональных элементов. Это прямое наблюдение соответствует заключению теоремы 5: в отсутствие гирокоспических сил все собственные значения системы (1.3) вещественны, если $P < 0$.

Итак, пусть $D_0 = \text{diag}(d_1, \ldots, d_k)$, причем $d_i = \pm \mu_i$.

Лемма 1. Если $d_i + d_j \neq 0$ для всех $1 \leq i, j \leq k$, то уравнение $D_0X + XD_0 = Y$ разрешимо относительно X в классе симметричных матриц, причем

$$\|X\| \leq c\|Y\|, \quad c \leq \max |d_i + d_j|^{-1}$$

где $\|\cdot\|$ — любая матричная норма.

Действительно, если $Y = \|y_{ij}\|$ и $X = \|x_{ij}\|$, то

$$x_{ij} = y_{ij}/(d_i + d_j)$$

Отметим, что условие леммы заведомо выполнено, если среди чисел μ_1, \ldots, μ_k нет равных. Оно также справедливо в случаях, когда $D_0 = M$ или $D_0 = -M$.

Лемма 1 гарантирует разрешимость цепочки соотношений (6.2) относительно D_1, D_2, \ldots. Пусть D_1 — решение первого уравнения цепочки (6.2). Положим

$$\|D_1 - \Gamma/2\| = d^*, \quad \|D_1 + \Gamma/2\| = d^+, \quad 2d = d^* + d^-$$

Остальные уравнения этой цепочки можно представить в виде

$$D_0D_2 + D_2D_0 + (D_1 + \Gamma/2)(D_1 - \Gamma/2) = 0$$
$$D_0D_3 + D_3D_0 + (D_1 + \Gamma/2)D_2 + D_2(D_1 - \Gamma/2) = 0$$
$$D_0D_4 + D_4D_0 + D_2^2 + (D_1 + \Gamma/2)D_3 + D_3(D_1 - \Gamma/2) = 0$$

..............................

Отсюда получаем последовательно

$$\|D_2\| \leq cd^*d^- \leq c(d^* + d^-)^2/4 = cd^2$$
$$\|D_3\| \leq c\|D_2\|(d^* + d^-) \leq 2c^2d^2$$

..............................

$$\|D_m\| \leq \kappa_m c^{m-1}d^m$$

Укажем рекуррентное правило для вычисления коэффициентов $\kappa_m, m \geq 1$:

$$\kappa_2 = 1, \quad k_3 = 2, \quad \kappa_4 = \kappa_2^2 + 2\kappa_3, \quad \kappa_5 = 2\kappa_2\kappa_3 + 2\kappa_4$$

$$\kappa_6 = \kappa_2^2 + 2\kappa_2\kappa_4 + 2\kappa_5, \ldots$$

(6.5)

Введем функцию

$$g(z) = \sum_{m=1}^{\infty} \kappa_m z^m, \quad \kappa_1 = 1$$

(6.6)

Лемма 2. Функция f удовлетворяет уравнению $f^2 = f - z$.

Доказательство сразу вытекает из формулы (6.5).

Таким образом,

$$g(z) = [1 - (1 - 4z)^{1/2}]/2$$
и, следовательно, радиус сходимости степенного ряда (6.6) равен 1/4. Отсюда вытекает, что при $\varepsilon = 1$ исходный ряд (6.1) сходится, если

$$
|cd| < 1/4
$$

(6.7)

В действительности имеется 2^k условий (6.7) (по числу решений начального матричного уравнения $D_0^2 = -P$). Каждое из них заведомо выполнено, если норма $\|\Gamma\|$ мала. Действительно, согласно первому уравнению (6.2) и лемме 1, норма $\|D_1\|$ мала вместе с $\|\Gamma\|$. Далее $d^2 \leq \|D_1\| + \|\Gamma\|^2$. Значит, $d = (d^k + d^l)/2 \rightarrow 0$, если $\|\Gamma\| \rightarrow 0$.

Теорема 6. Предположим, что среди чисел $\mu_1, ..., \mu_k$ нет равных и выполнены все 2^k условий (6.7). Тогда все собственные числа линейной системы (1.3) вещественны.

Доказательство. Снова заменим Γ на $\varepsilon \Gamma$ и предположим, что параметр ε изменяется на отрезке $[0, 1]$. Тогда коэффициенты характеристического уравнения

$$
\begin{vmatrix}
\lambda^2 E + \lambda \varepsilon \Gamma + P
\end{vmatrix} = 0
$$

будут аналитическими функциями от параметра ε. Сначала заметим, что для почти всех $\varepsilon \in [0, 1]$ (кроме, быть может, конечного числа) все корни характеристического многочлена простые.

Действительно, дискриминант характеристического многочлена (6.8) — целая функция от его коэффициентов. Следовательно, дискриминант будет аналитической функцией от вещественного параметра ε, которая отлична от нуля при $\varepsilon = 0$ (так как в отсутствие гирокоспических сил корни уравнения (6.8) — различные вещественные пары μ_i). Следовательно, дискриминант может обращаться в нуль лишь в конечном числе точек отрезка $[0, 1]$.

Далее, согласно условиям (6.7), 2^k решений матричного уравнения (1.5) (в котором Γ заменено на $\varepsilon \Gamma$) — аналитические матричные функции от ε на отрезке $[0, 1]$. Эти функции попарно не совпадают, так как при $\varepsilon = 0$ их значения равны 2^k различным решениям матричного уравнения $D_0^2 = M^2$. Следовательно, для почти всех $\varepsilon \in [0, 1]$ уравнение (1.5) допускает ровно 2^k различных решений в виде симметричных $(k \times k)$-матриц.

Объединяя сказанное и применяв теоремы 4 и 5, получаем, что для почти всех ε все корни характеристического уравнения (6.8) разбиваются на k различных вещественных пар. Так как эти корни непрерывно зависят от параметра ε, то при $\varepsilon = 1$ они обязательно останутся вещественными.

Пример. Оказывается, комплексные четверки собственных чисел у систем с гирокоспическими силами (1.3) встречаются уже при $k = 2$. Положим

$$
\Gamma = \begin{pmatrix} 0 & \gamma \\ -\gamma & 0 \end{pmatrix}, \quad \Pi = \begin{pmatrix} -a & 0 \\ 0 & -b \end{pmatrix}, \quad a > b > 0
$$

Если $\gamma = 0$, то имеются две вещественные пары $\pm \sqrt{a}$, $\pm \sqrt{b}$ собственных значений. При увеличении $|\gamma|$ они начинают двигаться навстречу друг другу и сливаются в точках $\pm(ab)^{1/4}$, когда $|\gamma| = \sqrt{a} - \sqrt{b}$. Далее они сходятся с вещественной оси и при $\sqrt{a} = \sqrt{b}$ имеется комплексная четверка собственных значений. Когда $|\gamma| = \sqrt{a} + \sqrt{b}$, собственные значения сталкиваются в точках $\pm i(ab)^{1/4}$ мнимой оси. При дальнейшем увеличении $|\gamma|$ они расходятся вдоль мнимой оси и равновесие становится устойчивым.

Укажем границу вещественности собственных значений, которую дают неравенства (6.7). Положим

$$
D_0 = \text{diag}(\pm \sqrt{a}, \pm \sqrt{b})
$$
Тогда

\[
D_1 = \begin{pmatrix}
0 & \frac{\gamma(\sqrt{a} + \sqrt{b})}{2(\sqrt{a} - \sqrt{b})} \\
\gamma(\sqrt{a} + \sqrt{b}) & 0 \\
\frac{\gamma(\sqrt{a} + \sqrt{b})}{2(\sqrt{a} - \sqrt{b})} & \frac{1}{\sqrt{a} - \sqrt{b}}
\end{pmatrix}, \quad c = \frac{1}{\sqrt{a} - \sqrt{b}}
\] (6.9)

и, следовательно,

\[
d = d^\perp = |\gamma|\sqrt{a}/(\sqrt{a} - \sqrt{b})
\]

Таким образом, неравенство (6.7) дает достаточное условие вещественности

\[
|\gamma| < (\sqrt{a} - \sqrt{b})^2/(4\sqrt{a})
\] (6.10)

Ясно, что правая часть этого неравенства не превосходит \(\sqrt{a} - \sqrt{b}\), если \(a \geq b\).

Отметим, что если считать выполнененным равенство (6.9), то неравенство (6.7) да-\(\]ет условие

\[
|\gamma| < (\sqrt{a} + \sqrt{b})^2/(4\sqrt{a})
\] (6.11)

которое включает условие (6.10). Однако, по теореме 6, интервал вещественности собственных значений сводится к пересечению интервалов (6.10) и (6.11). Согласно теореме 1, неравенство (6.10) – достаточно условие отсутствия сильной устойчивос-\(\]ти равновесия системы (1.3).

Работа выполнена при финансовой поддержке Российского фонда фундаменталь-\(\]ных исследований (02-01-01059) и в рамках программы “Государственная поддержка ведущих научных школ” (НШ-136.2003.1).

ЛИТЕРАТУРА

2. Арнольд В.И. Об условиях нелинейной устойчивости плоских стационарных криволиней-\(\]ных течений идеальной жидкости // Докл. АН СССР. 1965. Т. 162. № 5. С. 975–978.

Москва Поступила в редакцию e-mail: kozlov@pran.ru 24.VI.2003