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1. STATISTICAL EQUILIBRIUM

The main object of study is an ideal gas as a colli-
sion-free solid medium in a vessel that has the shape of
the right parallelepiped

Of special interest is, of course, the case where 

 

n

 

 = 3.
However, the theory developed in this paper does not
depend on the dimension 

 

n

 

. “Collision-free” means that
the particles do not collide: they move uniformly and
rectilinearly and are elastically reflected by the bound-
ary of the vessel 

 

Π

 

. We assume that the set of particles
forms a continuum. More precisely, the gas particles
are distributed in space according to velocities, and the
density of such a distribution is a measurable summable
function.

For the first time, this model problem was consid-
ered by Poincaré in [1].

 

 A propos

 

, for 

 

n

 

 = 1, the
Poincaré model precisely corresponds to the common
idea of a gas as a large number of small identical balls
elastically colliding with each other. The point is that,
under an elastic collision of identical balls moving
along one straight line, a mere interchange of their rates
occurs.

There is a different point of view, which goes back
to Gibbs. Consider a simple dynamical system, namely,
a particle in the parallelepiped 

 

Π

 

 which is elastically
reflected by the boundary 

 

∂Π

 

. The initial position and
velocity of the particle can be specified with an error
distributed according to a certain law. In other words,
the state of such a system is a random event. The corre-
sponding probability distribution density evolves in
time and satisfies the classical Liouville equation,
which can be regarded as a continuity equation in the
Poincaré model.

The fundamental observation of Poincaré is that,
independently of the initial distribution, as 

 

t

 

 

 

→ ±∞

 

, a
collision-free gas irreversibly tends to uniformly fill the
entire volume of a rectangular box with mirror walls. A

Πn z1 z2 … zn: 0 zk lk; 1 k n≤ ≤≤ ≤, , ,{ }.=

 

precise formulation of this remarkable result and its
proof are given in [2] (see also [3]).

From a more general point of view, this observation
of Poincaré fits into a general concept related to weak
convergence of probability measures and statistical
(thermal) equilibrium of Hamiltonian dynamical
systems.

Let 

 

z

 

 = (

 

z

 

1

 

, 

 

z

 

2

 

, …, 

 

z

 

n

 

)

 

 be the position of a point mov-
ing at velocity 

 

v

 

 =

 

 

 

(

 

v

 

1

 

, 

 

v

 

2

 

, …, 

 

v

 

n

 

)

 

. The set of states
(

 

z

 

, 

 

v

 

), where 

 

z

 

 

 

∈

 

 

 

Π

 

n

 

 and 

 

v

 

 

 

∈ 

 

�

 

n

 

, is the phase space 

 

Γ

 

.
Next, let 

 

ρ

 

(

 

z

 

, 

 

v

 

)

 

 be the density of the initial distribution
of the gas. It can be assumed that 

 

ρ ∈ 

 

L

 

1

 

(É

 

), although,
in some cases, it is more convenient to assume that 

 

ρ ∈

 

L

 

p

 

(É

 

), where 

 

1 

 

≤

 

 

 

p

 

 < 

 

∞

 

. The initial density of the distri-
bution 

 

ρ

 

 is transferred by the phase flow and becomes a
function of time 

 

t

 

: 

 

ρ

 

t

 

(

 

z

 

, 

 

v

 

)

 

. It satisfies the Liouville
equation and is uniquely determined by the initial con-
dition 

 

ρ

 

0

 

 = 

 

ρ

 

.

We say that 

 

ρ

 

t

 

 weakly converges to a function  if,
as 

 

t

 

 → ∞

 

,

 

(1)

 

for any function 

 

ϕ ∈ 

 

L

 

q

 

(

 

Γ

 

)

 

, where 

 

 + 

 

 = 1. The case

of 

 

p

 

 = 1 corresponds to 

 

q

 

 = 

 

∞

 

. Recall that the class 

 

L

 

∞

 

is formed by the measurable essentially bounded func-
tions. The function 

 

(

 

z

 

, 

 

v

 

)

 

 belongs to 

 

L

 

p

 

(

 

Γ

 

)

 

, is a first
integral of the system under consideration, is nonnega-
tive, and satisfies (as well as 

 

ρ

 

) the natural normaliza-
tion condition

It can be represented as the Birkhoff mean

where 

 

z

 

 and 

 

v

 

 as functions of time are solutions to the
equations of motion with the initial conditions 

 

z

 

0

 

 and

 

v

 

0

 

. These results are also valid in the more general case,

ρ

ρtϕ dnz dn
v ρϕ dnz dn

v

Γ
∫→

Γ
∫

1
p
--- 1

q
---

ρ

ρ dnz dn
v

Γ
∫ 1.=

ρ z0 v 0,( ) 1
τ
--- ρ z t z0 v 0, ,( ) v t z0 v 0, ,( ),( ) t,d

0

τ

∫τ ∞→
lim=
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when the parallelepiped Π is replaced by an arbitrary
domain in �n with a piecewise-regular boundary (see
[3, 4]).

It is natural to treat the function  as the distribution
density in the state of statistical (thermal) equilibrium
of the system. In the problem under consideration, 

depends only on the squared velocities , , …,

. Such distributions generate an equation of state
of the type of the Clapeyron–Mendeleev equation (see
[2, 3, 5]).

Now, let us slowly change the size of the parallelepi-
ped Π assuming that the edge lengths ls are smooth
functions of the “slow” time variable τ = εt, where ε is
a small parameter. At ε = 0, the size of the vessel does
not vary. In thermodynamics, it is assumed that an infi-
nitely slow change of parameters leads to a reversible
quasi-static process, when the state of the system can be
considered virtually equilibrium at each moment of
time. We shall try to rigorously substantiate this conjec-
ture for the model system under consideration on the
basis of the theory of adiabatic invariants. More pre-
cisely, we shall considered the following two problems:

(i) Can a collision-free gas attain a state close to a
statistical equilibrium if the parameters vary slowly and

time t is sufficiently large ?

(ii) Suppose that, at the initial moment of time t = 0,
a collision-free gas is already in a state of statistical
equilibrium and, at t ≥ 0, the walls of the vessel start to
move slowly and smoothly. Will the gas remain virtu-
ally in a state of statistical equilibrium at succeeding
moments of time, and how long can such a process be
considered quasi-static?

We start with a consideration of the second problem.

2. QUASI-STATIC STATES

Suppose that the side lengths l1, l2, …, ln of the paral-
lelepiped are smooth functions of εt and ρ is the initial
probability distribution density. Then the density ρt at
time t depends on ε (in addition to the phase variables z
and v). We assume that the product l1, l2, …, ln (the vol-
ume of Π) is bounded and nowhere vanishes.

Theorem 1. If a density ρ ∈ Lp(Γ) depends only on

, , …, , then there exists a probability measure

such that, for any ϕ ∈ Lq(Γ) and any t ∈ ,  (where

ρ

ρ
v 1

2
v 2

2

v n
2

~
1
ε
---⎝ ⎠

⎛ ⎞

v 1
2
v 2

2
v n

2

νt v 1
2
v 2

2 … v n
2 ε, , , ,( )dnzdn

v ,

νt Lp, ν0∈ ρ,=

0
c
ε
--

Ò is a constant),

, (2)

as ε → 0.

According to the considerations of Section 1, the
function νt can be treated as a stationary probability dis-
tribution density at time t: the mean values of the
dynamical quantities are evaluated by the same rule as
on the right-hand side of (1). For example, suppose that
p = 1 and ϕ is the characteristic function of a measur-
able domain Φ ⊂ Π. Then, according to (2), the integral

(3)

at small ε is arbitrarily close to the ratio . The

value of integral (3) coincides with the fraction of the
particles from the Gibbs ensemble that are in the
domain Φ at time t. Therefore, if ε is small, then the col-
lision-free gas will remain virtually uniformly distrib-
uted over the volume of the vessel during a sufficiently

long time interval .

To prove Theorem 1, we set

(4)

Clearly, νt ∈ Lp (if ρ ∈ Lp), ν0 = ρ, and

at all values of t. What does the solution ρt to the Liou-
ville equation with Cauchy data ρ look like? To answer
this question, we must invert the general solution

to the equations of a particle and substitute the resulting

formula for v0 = v(0) into the expression for ρ( (0),

(0), …, (0)). Thus, ρt(z, v) = ρ( ). On the other

hand, the products  are adiabatic invariants [6], i.e.,

for 0 ≤ t ≤  (c = const > 0). Therefore, (0) =  +

ρtϕdnzdn
v νtϕdnzdn

v

Γ
∫–

Γ
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2

v n
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v 0
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v k
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2 εt( ) v k
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1
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2 v k
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2

lk
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O(ε) and

(5)

Comparing (4) and (5), we can derive the required rela-
tion (2).

As is well known [1], the Gibbs entropy is always
constant:

(6)

Interestingly, the entropy of quasi-static states

(7)

does not change with time either. Thus, the quasi-static
process under consideration is adiabatic. It is interest-
ing to compare this observation with the result that,
under an irreversible extension of a collision-free gas,
the entropy increases: we replace the density ρt in
expression (6) by its weak limit , then, as a rule, the
entropy will increase [2].

As opposed to entropy, the internal energy e of an
ideal gas (which is proportional to the absolute temper-
ature τ) may change under adiabatic processes. We set

(8)

(assuming that this integral converges). Consider the
case where n = 3 and l1 = l2 = l3 = l (the vessel has the
shape of a cube). By Theorem 1, when the walls of the
vessel slowly move, integral (8) differs little from the
integral

(9)

where w is the volume of the vessel Π. Formula (8) is
easily derived with the use of (4). Since e = cτ (c =
const), (9) implies the well-known equation of an adia-
batic curve for an ideal one-atom gas:

(10)

3. APPROACHING
OF A STATISTICAL EQUILIBRIUM

Now, let us discuss the first problem concerning the
“zeroth” law of thermodynamics under slowly varying
boundary conditions. Suppose that ρ ∈ Lp(Γ) and ϕ ∈

ρt ρ
v 1

2l1
2

l1
2 0( )

----------- O ε( )
v 2

2l2
2

l2
2 0( )

----------- O ε( ),+  …, 
v n
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St ρt ρtd
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vln
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St νt νtd
nzdn

vln

Γ
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ρ
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2

2
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v

Γ
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2

2
------νtd
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v

Γ
∫

w0
2/3

w2/3
---------e0, e0 e 0( ),= = =

τw2/3 const.=

Lq(Γ) is a test function. More precisely, we assume that

ϕ is a function of , , …, , l1v1, l1v2, …, lnvn,

which belongs to Lq at each value of t. We set

Theorem 2. If ls are smooth functions of εt, then

there exists a function ( , , …, ) such
that

(11)

For example, suppose that p = 1 and ϕ is the charac-
teristic function of a measurable domain Φt ⊂ Π. This
domain slowly varies, similarly to a deformation of the
ambient parallelepiped Π . Theorem 2 asserts that, for
small values of ε (independently of the initial distribu-
tion), the fraction of collision-free gas located in the
domain Φt will become virtually equal to the fraction of
this domain in the parallelepiped Π at a sufficiently

large time  [see (11)]. For example, if Π is divided

into two equal parts by a wall, then, in time , the gas

will become distributed virtually equally between these
domains.

If the function  is taken for the initial distribution

density, then, during a large time interval , the

collision-free gas virtually remains in a state of static
equilibrium (Theorem 1).

Theorem 2 is proved with the use of regularization
(passage to a 2n-fold covering of Π by an n-torus), the
methods of [2], and the theory of adiabatic invariants.

4. SCATTERING BILLIARDS

A statistical equilibrium of a collision-free gas takes
place inside an arbitrary closed vessel with piecewise-
regular surface. Any initial distribution with density
ρ ∈ Lp generates a solution ρt to the Liouville equation,
and this solution weakly converges to some function

 ∈ Lp . This function is the Birkhoff mean of ρ, is
invariant with respect to the phase flow of the dynami-
cal system with collisions under consideration, and has
the meaning of a stationary probability distribution
density (see [3, 4]).

This result suggests a generalization of problems 1
and 2 from Section 1 to domains of arbitrary shapes.
Suppose that the boundary of a vessel is changed very
slowly and smoothly. Will a collision-free gas manifest
quasi-static behavior? Analyzing this situation in the

z1

l1
----

z2

l2
----

zn

ln

----

K t( ) ρtϕdnzdn
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∫=
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2
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general case requires developing the theory of adiabatic
invariants. This theory was created for two extreme
cases: when completely integrable systems are per-
turbed and when the nonperturbed system is ergodic on
almost all level surfaces of the energy integral (see [6]).
The former case occurs precisely when Theorems 1 and
2 apply. The second case is covered by a well-known
theorem of Kasuga [7].

Now, suppose that the vessel Π ⊂ �n is bounded by
a piecewise-smooth surface strictly convex inside Π. A
particle moving by inertia inside Π and elastically
reflected by the boundary generates a dynamical sys-
tem, which is called a scattering billiard (or a Sinai bil-
liard). This system is certainly ergodic at the positive
values of the particle energy h [8, 9]. The weak limit of
the solution to the Liouville equation with Cauchy data
ρ ∈ Lp is a function  ∈ Lp depending only on the
energy h.

Now, suppose that the shape of the vessel depends
on a parameter, which, in its turn, smoothly depends on
the slow time variable εt, where ε is a small parameter.
In particular, the volume w of the vessel Π also
smoothly depends on εt.

Theorem 3. If the initial density ρ depends only on

the energy h = , then the probabil-

ity measure

,

determines a quasi-static invertible process, i.e.,
(i) (2) holds;
(ii) entropy (7) is constant;
(iii) equation (10) of an adiabatic curve is valid (for

n = 3).
The proof of Theorem 3 is similar to that of Theo-

rem 1. An important role is played by the Kasuga theo-
rem that an adiabatic invariant is the volume of the phase
space enclosed inside an isoenergy hypersurface [7] (the
results of [7] should be somewhat modified, because
they refer to smooth, Hamiltonian systems). It is easy to
understand that this volume is proportional to the prod-
uct hn/2w.

The Kasuga theorem (after an appropriate modifica-
tion) makes it possible to give a positive answer to
problems 1 and 2 as applied to a “real” Boltzmann–

Gibbs gas contained in a rectangular box with mirror
walls. This gas is a large set of small identical balls
which elastically collide with each other and with the
walls of the box. If the box’s size does not vary with
time, then, independently of the initial distribution of
these balls with respect to the spatial coordinates and
velocities, the Boltzmann–Gibbs gas irreversibly tends
to a state of statistical (thermal) equilibrium. According
to [8], the billiard system under consideration is
ergodic on the energy surfaces. In particular, in a state
of statistical equilibrium, all possible positions of balls
in a rectangular vessel are equiprobable (the limit den-
sity  depends only on the energy of the system).

Now, let us move one of the box walls slowly and
smoothly. If the Boltzmann–Gibbs gas was in a state of
statistical equilibrium, then the state of the gas will dif-
fer little from the corresponding equilibrium state in a
sufficiently large time interval. If the state of the gas
was not a statistical equilibrium, then the gas will attain
a state close to a state of statistical equilibrium in a suf-
ficiently large (but finite) time.
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