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Consider a system of differential equations

o = f(1), ey

where x = (x|, x,, ..., X,mod2m) are angular coordinates
on an n-dimensional torus, ® = (®;, ®,, ..., ®,) € R,
and fis a given vector function of 7. Assume that f is
twice (Riemann) integrable with respect to time ¢.
Equations (1) describe the motion of a mechanical
system with configuration space 1" = {x} and Kinetic
(0, ®)
2

X = o,

energy T = under the action of an external

force f.

If f=0, then (1) is a completely integrable Hamilto-
nian system, with the coordinates x and ® being action—
angle variables. The same form is possessed by pertur-
bations of completely integrable Hamiltonian systems
in the general nondegenerate case.

Following Gibbs, we define a probability measure
p(x, )d"xd"® with a summable density p in the phase
space I' = T" x R". The flow of system (1) transports
this measure, so that the density p,(x, ®) becomes a
function of time. Since the divergence of the right-hand
side of system (1) is zero, the probability density satis-
fies the Liouville equation

ap,+(8p, w)+(3—g, f) =0 2)

9t \ox’
with initial condition p, = p.
Let ¢: T"— R be a measurable bounded function.
Since p, € Li(I') for all ¢, the integral

K(t) = j p.(x, )o(x)d"xd"®
r

is a well-defined function of time. If ¢ is the character-
istic function of a measurable domain D < T", then K(¢)
is the fraction of Hamiltonian systems in the Gibbs
ensemble that occupy D at time .
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According to the ergodic theorem, the limit
T

lim % p(x— ot, w)dt 3)
0

exists for almost all x and ®, coincides almost every-
where with an integrable function p(®) =0, and

jr) d'xd'o = (Zn)"J’ﬁ(m)d”co = 1.
T R"

Thus, the function p can be treated as the density of the
limit probability measure (in a weak sense) that corre-
sponds to a statistical equilibrium of the system under
consideration.

THE MAIN RESULT
Theorem 1. Under the assumptions made above,

lim K(r) = j B(@)e(x)d"xd"®

r

_ 1
(2m)

- [o(nd"x. @)
.

Corollary. Let ¢ be the characteristic function of a
measurable domain D. Then

lim K(¢) = 2esD

t— too

mesT"

Thus, as time increases indefinitely, the systems in
the Gibbs ensemble become uniformly distributed on
the n-dimensional configuration torus [”. For f= 0, this
result was established in [1].

Theorem 1 is proved by the method described in [1].
The basic point lies in the analysis of the case where
©(x) = expi(m, x), m € Z". It is necessary to show that,
for m #0,

[pix @)™ d'xd"o -0 5)

r
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as t — oo, For this purpose, we first solve the Liouville
equation (2):

p.(x, ®) = p(x— o1+ h(r), ®—g(1)), (6)
where p is a Cauchy datum, g (¢) = f(#), g(0) = O,
h(t) = tf(t), and h(0) = 0. Formula (6) is verified by

direct calculations.
Thus,

K(t) = jp(x —ot+ho-g)e(x)d'xd'®

r

= jp(x, ®)o(x + of + A1) d"xd" o,

r

where A (1) = g(¢) and M(0) = 0. It is easy to verify that
A=—h.

Now setting ¢ = expi(m, x), we derive an explicit
formula for the integral in (5):

ei(m,?u)J‘ '[p(X, (D)ei(m,x)ei(m,w)tdnxdn(o

Rn —U—n

— ei(m,x)J‘pm(m)ei(m, w)tdno)’ (7)
R
where

P (®) = Jp(x, )" d'x.
™

Since p,, is an integrable function, we conclude that, for
m # 0, integral (7) approaches zero as t — Foo (accord-
ing to the theory of the Fourier transform), which was
to be proved.

Remark. In the presence of a force f, an additional
bounded oscillating factor expi(m, A(f)) appears in (7).

Theorem 1 can be extended in different directions.
For example, suppose that the initial density p belongs
to L,(I') (hence, p, € L, for all f) and ¢ is a function
from L,(I"). Then

K(1) = Jp,(p d"xd"o (8)
r
is a well-defined function of time. It happens that
lim K(7) = j pod'xd'w, )
t— too
r

where p is defined by limit (3). Thus, p is a weak limit
of p, as time increases indefinitely. The state of the sys-
tem with probability density p can be called a statisti-
cal (thermal) equilibrium. It should be emphasized that
the presence of a nonstationary perturbing force f(r)
does not influence the approach of the system to ther-
mal equilibrium.
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Let
S, = —Ip,lnp,d"x d'o
r

be the entropy of the system at time ¢. It is easy to show
that S, = const. This is a generalization of Poincaré’s
observation that the fine-grained entropy of autono-
mous dynamic systems is constant (see [2]). It is possi-
ble to introduce the entropy of a system at statistical
equilibrium:

S, = —jﬁlnﬁd”xd”m.
r

We have the simple inequality
S, <8.., (10)

which corresponds to the second law of thermody-
namics for irreversible processes. The formula for the
entropy increment S., — S, can be derived in accor-
dance with phenomenological thermodynamics (a dis-
cussion can be found in [1]). However, in the general
case, inequality (10) is valid only for adiabatic pro-
cesses, without any heat inflow. For the system con-

sidered, T = (o, f) # 0.
Note that the integral in (8) is also defined when p €

1 1 .
L,(T’) and ¢ € L"), where 1—7 + 5 = 1. The limit rela-

tion (9) is also true in this case. In Theorem 1, p =1 and
q = oo (recall that L, is the class of essentially bounded
measurable functions).

SINGULAR LIMIT DISTRIBUTIONS

Consider the simple problem of oscillations of a
unit-mass ball between two walls 0 < z < a. Suppose
that a force f(¢) acts on the ball. For example, we may
assume that a charged ball is placed in a variable elec-
tric field. At first glance, this is a system of type (1)—
an external perturbation of an integrable system. How-
ever, this is not the case, and the problem is reduced to
the analysis of parametric perturbations.

Consider a two-sheeted cover of the line segment by
the circle T! = {xmod2n}, introducing an angular vari-

able according to the following rule: x = TEEZ when z

. Tz
increases from zero to a, and x = 2w — — when ¢
a

decreases from a to zero. The equation of motion of the
ball takes the form

X =-f(Vv., (11)
2
where V(x) = —%C forO<x<mand V(x) = X _ 2%

for m < x < 2w. The evolution of probabilities of the
measure of Eq. (11) is a more complicated problem
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[compared to the analysis of system (1)], and it can be
solved only under some additional conditions.

For example, let f(f) = const. Then Eq. (11) can be
explicitly integrated, and it is easy to show that the
weak limit of the probability density of the measure is

2

a function of the total energy % + fV(x). Integration

with respect to velocity yields a probability density in
the configuration space, which is generally not constant

(see [1]).

Assume that f(#) increases monotonically as t —
+co and

L. .2
IEET (12)
Applying the method of [3], we can show that all solu-
tions x(¢) to Eq. (11) tend to the minimum point of the
potential V(x) as t — +oo. Consequently, under these
assumptions, the limit probability density of the ball’s
positions on the line segment coincides with the delta
function &(z — a).

These observations can be generalized. Suppose
that M" = {x} is the compact configuration space of a
mechanical system with n degrees of freedom, 7' is the
kinetic energy [a positive definite quadratic form in the
momenta y = (y;, V5, ..., y,)], V: M — R is a smooth
function, and f(#)V is the potential energy. The phase
space I is the cotangent bundle of M, and the Hamilto-
nian is H =T + f(#)V. Let p, be the probability density in
I" transported by the flow of the Hamiltonian system,
and let p, = p be a Cauchy datum.

Theorem 2. Suppose that the measure pd"xd"® is
absolutely continuous with respect to the Liouville
measure on I, the function V has only nondegenerate
critical points on M, the function t —> f(f) increases
monotonically with t, and (12) is fulfilled. If : M — R
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is the characteristic function of a measurable domain
on M not containing local minimum points of V, then

[px o d'xd'o—0
r
as t — +oo.

CONCLUSIONS

Thus, the limit distribution of the Gibbs ensemble
on the configuration space M is singular: this measure
is concentrated on a finite set of points that are local
minima of V. Theorem 2 is deduced from the result of
[3]: under the conditions specified, almost all solutions
to the Hamilton equations with the Hamiltonian H = T +
fV are such that x(¢) tends to a local minimum of V as
time increases indefinitely. Moreover, the momenta y()
are unbounded (by the Liouville theorem on the conser-
vation of the phase volume of Hamiltonian systems).
Therefore, the frequencies of small-amplitude oscilla-
tions increase indefinitely as the system approaches a
stable equilibrium.
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