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Consider a system of differential equations
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 are angular coordinates
on an 
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-dimensional torus, 
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,

 

and 

 

f

 

 is a given vector function of 

 

t

 

. Assume that 

 

f

 

 is
twice (Riemann) integrable with respect to time 

 

t

 

.
Equations (1) describe the motion of a mechanical
system with configuration space 

 

�

 

n

 

 = 

 

{

 

x

 

}

 

 and kinetic

energy 

 

T

 

 

 

= 

 

 under the action of an external

force 

 

f

 

.

If 

 

f

 

 = 0, then (1) is a completely integrable Hamilto-
nian system, with the coordinates 

 

x

 

 and 

 

ω

 

 being action–
angle variables. The same form is possessed by pertur-
bations of completely integrable Hamiltonian systems
in the general nondegenerate case.

Following Gibbs, we define a probability measure

 

ρ
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,

 

 

 

ω
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d
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xd

 

n

 

ω

 

 with a summable density 

 

ρ

 

 in the phase
space 

 

Γ

 

 =

 

 

 

�

 

n

 

 

 

× 

 

�

 

n

 

. The flow of system (1) transports
this measure, so that the density 

 

ρ

 

t

 

(

 

x

 

, 

 

ω

 

)

 

 becomes a
function of time. Since the divergence of the right-hand
side of system (1) is zero, the probability density satis-
fies the Liouville equation

 

(2)

 

with initial condition 

 

ρ

 

0

 

 = 

 

ρ

 

.

Let 

 

ϕ

 

: 

 

�

 

n

 

 

 

→ 

 

�

 

 be a measurable bounded function.
Since 

 

ρ

 

t

 

 

 

∈

 

 

 

L

 

1

 

(

 

Γ

 

)

 

 for all 

 

t

 

, the integral

is a well-defined function of time. If 

 

ϕ

 

 is the character-
istic function of a measurable domain 

 

D

 

 

 

⊂

 

 

 

�

 

n

 

, then 

 

K

 

(

 

t

 

)

 

is the fraction of Hamiltonian systems in the Gibbs
ensemble that occupy 

 

D

 

 at time 

 

t

 

.

ẋ ω ω̇, f t( ),= =
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----------------

∂ρt
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-------
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⎛ ⎞+ + 0=

K t( ) ρt x ω,( )ϕ x( ) dnx dnω
Γ
∫=

 

According to the ergodic theorem, the limit

 

(3)

 

exists for almost all 

 

x

 

 and 

 

ω

 

, coincides almost every-
where with an integrable function 

 

(

 

ω

 

) 

 

≥

 

 0

 

, and

Thus, the function  can be treated as the density of the
limit probability measure (in a weak sense) that corre-
sponds to a statistical equilibrium of the system under
consideration.

THE MAIN RESULT

 

Theorem 1.

 

 

 

Under the assumptions made above

 

,

 

(4)

 

Corollary.

 

 

 

Let

 

 

 

ϕ

 

 

 

be the characteristic function of a
measurable domain

 

 

 

D

 

. 

 

Then

 

Thus, as time increases indefinitely, the systems in
the Gibbs ensemble become uniformly distributed on
the 

 

n-dimensional configuration torus �n. For f = 0, this
result was established in [1].

Theorem 1 is proved by the method described in [1].
The basic point lies in the analysis of the case where
ϕ(x) = expi(m, x), m ∈ �n. It is necessary to show that,
for m ≠ 0,

(5)

1
τ
--- ρ x ωt– ω,( ) td

0

τ

∫τ ∞→
lim

ρ

ρ dnx dnω
Γ
∫ 2π( )n ρ ω( )dnω

�
n

∫ 1.= =

ρ

K t( )
t ∞±→
lim ρ ω( )ϕ x( ) dnx dnω

Γ
∫=

=  
1

2π( )n
------------- ϕ x( )dnx.

�
n

∫

K t( )
t ∞±→
lim

mesD

mes�
n

----------------.=

ρt x ω,( )ei m x,( ) dnx dnω 0→
Γ
∫
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as t → ±∞. For this purpose, we first solve the Liouville
equation (2):

(6)

where ρ is a Cauchy datum, (t) = f(t), g(0) = 0,

(t) = tf(t), and h(0) = 0. Formula (6) is verified by
direct calculations.

Thus,

where (t) = g(t) and λ(0) = 0. It is easy to verify that
λ = –h.

Now setting ϕ = expi(m, x), we derive an explicit
formula for the integral in (5):

(7)

where

Since ρm is an integrable function, we conclude that, for
m ≠ 0, integral (7) approaches zero as t → ±∞ (accord-
ing to the theory of the Fourier transform), which was
to be proved.

Remark. In the presence of a force f, an additional
bounded oscillating factor expi(m, λ(t)) appears in (7).

Theorem 1 can be extended in different directions.
For example, suppose that the initial density ρ belongs
to L2(Γ) (hence, ρt ∈ L2 for all t) and ϕ is a function
from L2(Γ). Then

(8)

is a well-defined function of time. It happens that

(9)

where  is defined by limit (3). Thus,  is a weak limit
of ρt as time increases indefinitely. The state of the sys-
tem with probability density  can be called a statisti-
cal (thermal) equilibrium. It should be emphasized that
the presence of a nonstationary perturbing force f(t)
does not influence the approach of the system to ther-
mal equilibrium.

ρt x ω,( ) ρ x ωt– h t( )+ ω g t( )–,( ),=
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ḣ
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ρ ρ
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Let

be the entropy of the system at time t. It is easy to show
that St ≡ const. This is a generalization of Poincaré’s
observation that the fine-grained entropy of autono-
mous dynamic systems is constant (see [2]). It is possi-
ble to introduce the entropy of a system at statistical
equilibrium:

We have the simple inequality
St ≤ S∞, (10)

which corresponds to the second law of thermody-
namics for irreversible processes. The formula for the
entropy increment S∞ – S0 can be derived in accor-
dance with phenomenological thermodynamics (a dis-
cussion can be found in [1]). However, in the general
case, inequality (10) is valid only for adiabatic pro-
cesses, without any heat inflow. For the system con-

sidered,  = (ω, f ) � 0.
Note that the integral in (8) is also defined when ρ ∈

Lp(Γ) and ϕ ∈ Lq(Γ), where  +  = 1. The limit rela-

tion (9) is also true in this case. In Theorem 1, p = 1 and
q = ∞ (recall that L∞ is the class of essentially bounded
measurable functions).

SINGULAR LIMIT DISTRIBUTIONS
Consider the simple problem of oscillations of a

unit-mass ball between two walls 0 ≤ z ≤ a. Suppose
that a force f(t) acts on the ball. For example, we may
assume that a charged ball is placed in a variable elec-
tric field. At first glance, this is a system of type (1)—
an external perturbation of an integrable system. How-
ever, this is not the case, and the problem is reduced to
the analysis of parametric perturbations.

Consider a two-sheeted cover of the line segment by
the circle �1 = {xmod2π}, introducing an angular vari-

able according to the following rule: x =  when z

increases from zero to a, and x = 2π –  when z

decreases from a to zero. The equation of motion of the
ball takes the form

(11)

where V(x) =  for 0 < x < π and V(x) =  – 

for π < x < 2π. The evolution of probabilities of the
measure of Eq. (11) is a more complicated problem

St ρt ρt dnx dnωln

Γ
∫–=

S∞ ρ ρ dnx dnω.ln

Γ
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Ṫ
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--- 1
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[compared to the analysis of system (1)], and it can be
solved only under some additional conditions.

For example, let f(t) = const. Then Eq. (11) can be
explicitly integrated, and it is easy to show that the
weak limit of the probability density of the measure is

a function of the total energy  + fV(x). Integration

with respect to velocity yields a probability density in
the configuration space, which is generally not constant
(see [1]).

Assume that f(t) increases monotonically as t →
+∞ and

(12)

Applying the method of [3], we can show that all solu-
tions x(t) to Eq. (11) tend to the minimum point of the
potential V(x) as t → +∞. Consequently, under these
assumptions, the limit probability density of the ball’s
positions on the line segment coincides with the delta
function δ(z – a).

These observations can be generalized. Suppose
that Mn = {x} is the compact configuration space of a
mechanical system with n degrees of freedom, T is the
kinetic energy [a positive definite quadratic form in the
momenta y = (y1, y2, …, yn)], V: M → � is a smooth
function, and f(t)V is the potential energy. The phase
space Γ is the cotangent bundle of M, and the Hamilto-
nian is H = T + f(t)V. Let ρt be the probability density in
Γ transported by the flow of the Hamiltonian system,
and let ρ0 = ρ be a Cauchy datum.

Theorem 2. Suppose that the measure ρdnxdnω is
absolutely continuous with respect to the Liouville
measure on Γ, the function V has only nondegenerate
critical points on M, the function t � f(t) increases
monotonically with t, and (12) is fulfilled. If ϕ: M → �

is the characteristic function of a measurable domain
on M not containing local minimum points of V, then

as t → +∞.

CONCLUSIONS
Thus, the limit distribution of the Gibbs ensemble

on the configuration space M is singular: this measure
is concentrated on a finite set of points that are local
minima of V. Theorem 2 is deduced from the result of
[3]: under the conditions specified, almost all solutions
to the Hamilton equations with the Hamiltonian H = T +
fV are such that x(t) tends to a local minimum of V as
time increases indefinitely. Moreover, the momenta y(t)
are unbounded (by the Liouville theorem on the conser-
vation of the phase volume of Hamiltonian systems).
Therefore, the frequencies of small-amplitude oscilla-
tions increase indefinitely as the system approaches a
stable equilibrium.
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