СЛАБЫЕ ПРЕДЕЛЫ ВЕРОЯТНОСТНЫХ РАСПРЕДЕЛЕНИЙ В СИСТЕМАХ С НЕСТАЦИОНАРНЫМИ ВОЗМУЩЕНИЯМИ

© 2003 г. Академик В. В. Козлов

Поступило 09.01.2003 г.

Рассмотрим систему дифференциальных уравнений

$$\dot{x} = \omega, \quad \omega = f(t),$$

где $x = (x_1, x_2, \ldots, x_n \mod 2\pi)$ — угловые координаты на n-мерном торе, $\omega = (\omega_1, \omega_2, \ldots, \omega_n) \in \mathbb{R}^n, f$ — заданная вектор-функция t. Предположим, что функция f дважды интегрируема (по Риману) по времени t. Уравнения (1) описывают движение механической системы с конфигурационным пространством $\mathbb{T}^n = \{ x \}$, кинетической энергией $T = \frac{(\omega, \omega)}{2}$ и находящейся под действием внешней силы f.

Если $f = 0$, то (1) является вполне интегрируемой гамильтоновой системой, причем координаты x, ω служат переменными действия—угол. Такой же вид будет иметь возмущения вполне интегрируемых гамильтоновых систем в общем ненормированном случае.

Следуя Гиббсу, в фазовом пространстве $\Gamma = \mathbb{T}^n \times \mathbb{R}^n$ зададим вероятностную меру $\rho(x, \omega) d^n x d^n \omega$ с суммируемой плотностью ρ. Поток системы (1) переносит эту меру, так что плотность $\rho(x, \omega)$ становится функцией времени. Поскольку дивергенция правой части системы (1) равна нулю, то плотность распределения вероятностей удовлетворяет уравнению Лиувилля

$$\frac{\partial \rho}{\partial t} + \left(\frac{\partial \rho}{\partial x} , \omega \right) + \left(\frac{\partial \rho}{\partial \omega} , f \right) = 0$$

с начальным условием $\rho_0 = \rho$.

Пусть $\phi: \mathbb{T}^n \to \mathbb{R}$ — измеримая ограниченная функция. Поскольку $\rho_t \in L_1(\Gamma)$ при всех t, то интеграл

$$K(t) = \int_{\Gamma} \rho_t(x, \omega) \phi(x) d^n x d^n \omega$$

будет корректно определенной функцией времени. Если ϕ — характеристическая функция измеримой области $D \subset \mathbb{T}^n$, то $K(t)$ — это доля гамильтоновых систем из ансамбля Гиббса, которые в момент времени t находятся в области D.

Согласно эргодической теореме, для почти всех x, ω предел

$$\lim_{t \to +\infty} \frac{1}{t} \int_0^t \rho(x - \omega t, \omega) dt$$

существует, почти всюду совпадает с интегрируемой функцией $\bar{\rho}(\omega) \geq 0$ и

$$\int_{\mathbb{T}^n} \bar{\rho} d^n x d^n \omega = (2\pi)^n \int_{\mathbb{R}^n} \bar{\rho}(\omega) d^n \omega = 1.$$

Таким образом, функцию $\bar{\rho}$ можно трактовать как плотность предельной (в слабом смысле) вероятностной меры, которая отвечает статистическому равновесию рассматриваемой системы.

ОСНОВНОЙ РЕЗУЛЬТАТ

Теорема 1. В указанных предположениях

$$\lim_{t \to +\infty} K(t) = \int_{\Gamma} \bar{\rho}(\omega) \phi(x) d^n x d^n \omega =$$

$$= \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} \phi(x) d^n x.$$

Следствие. Пусть ϕ — характеристическая функция измеримой области D. Тогда

$$\lim_{t \to +\infty} K(t) = \frac{\text{mes} D}{\text{mes} \mathbb{T}^n}.$$

Таким образом, при неограниченном возрастании времени системы из ансамбля Гиббса равномерно распределены на n-мерном конфигурационном торе \mathbb{T}^n. При $f = 0$ этот результат установлен ранее в [1].

Доказательство теоремы 1 следует методу работы [1]. Основной момент заключается

Математический институт им. В. А. Стеклова
Российской Академии наук, Москва
в рассмотрении случая, когда \(\varphi(x) = \exp(i(m, x)) \), \(m \in \mathbb{Z}^n \). Надо показать, что при \(m \neq 0 \)
\[
\int_\Gamma \rho_t(x, \omega) e^{i(m, x)} d^n x d^n \omega \to 0,
\]
(5)
когда \(t \to \pm \infty \). Для этого свернем уравнение Лиувилля (2):
\[
\rho_t(x, \omega) = \rho(x - \omega t + h(t), \omega - g(t)),
\]
(6)
где \(\rho \) — данное Коши, \(g(t) = f(t), g(0) = 0, a h(t) = t f(t) \), причем \(h(0) = 0 \). Формула (6) проверяется прямыми вычислениями.

Таким образом,
\[
K(t) = \int_\Gamma \rho(x - \omega t + h, \omega - g) \varphi(x) d^n x d^n \omega = \rho_m(\omega)
\]
\[
= \int_\Gamma \rho(x, \omega) \varphi(x + \omega t + \lambda(t)) d^n x d^n \omega,
\]
(7)
где \(\lambda(t) = g(t), \lambda(0) = 0 \). Легко проверить, что \(\lambda = -h \).

Полагая теперь \(\varphi = \exp(i(m, x)) \), получаем явную формулу для интеграла из (5)
\[
\int_\Gamma \rho(x, \omega) e^{i(m, x)} d^n x d^n \omega = \int_\Gamma \rho(x, \omega) e^{i(m, \omega)} d^n x d^n \omega,
\]
(7)
где \(\rho_m(\omega) = \int_{T^n} \rho(x, \omega) e^{i(m, x)} d^n x \).

Поскольку \(\rho_m \) — интегрируемая функция, то для \(m \neq 0 \) интеграл (7) стремится к нулю при \(t \to \pm \infty \) (согласно теории преобразования Фурье). Что и требовалось.

З а м е ч а н и е. Наличие силы \(f \) приводит к появлению дополнительного ограниченного и осциллирующего множителя \(\exp(i(m, \lambda(t))) \) в (7).

Теорему 1 можно расширить в разных направлениях. Пусть, например, начальная плотность \(\rho \) принадлежит \(L_1(\Gamma) \) (следовательно, \(\rho_t \in L_1(\Gamma) \) для всех \(t \)) и \(\varphi \) — некоторая функция из \(L_1(\Gamma) \). Тогда корректно определена функция времени
\[
K(t) = \int_\Gamma \rho_t(\omega) d^n x d^n \omega.
\]
(8)
Оказывается,
\[
\lim_{t \to \pm \infty} K(t) = \int_\Gamma \rho(\omega) d^n x d^n \omega,
\]
(9)
где \(\rho \) определяется пределом (3). Таким образом, \(\rho \) — слабый предел плотности \(\rho_t \) при неограниченном возрастании времени. Состояние системы с плотностью распределения вероятностей \(\rho \) можно назвать статистическим (телловым) равновесием. Подчеркнем, что наличие нестационарной возмущающей силы \(f(t) \) не влияет на стремление системы к тепловому равновесию.

Пусть
\[
S_t = -\int_\Gamma \rho_t \ln \rho_t d^n x d^n \omega
\]
есть энтропия рассматриваемой системы в момент времени \(t \). Легко показать, что \(S_t \equiv \text{const.} \) Это обобщение наблюдения Пуанкаре о постоянстве тонкой энтропии автономных динамических систем (см. [2]). Можно ввести энтропию системы в состоянии статистического равновесия
\[
S_\infty = -\int_\Gamma \bar{\rho} \ln \bar{\rho} d^n x d^n \omega.
\]
(10)
Имеет место простое неравенство
\[
S_t \leq S_\infty.
\]
(10)
которое отвечает второму началу термодинамики для необратимых процессов. Формула для приращения энтропии \(S_\infty - S_0 \) находится в соответствии с феноменологической термодинамикой (обсуждение см. в [1]). Правда, в общем случае неравенство (10) справедливо лишь для аднабатических процессов, когда нет притока тепла. Для рассматриваемой системы \(T = (\omega, f) \neq 0 \).

Заметим, что интеграл (8) определен и в том случае, когда \(\rho \in L_p(\Gamma), \varphi \in L_q(\Gamma), \) где \(\frac{1}{p} + \frac{1}{q} = 1 \).

Здесь также справедливо предельное соотношение (9). В теореме 1 \(p = 1 \), а \(q = \infty \) (напомним, что класс \(L_\infty \) составляет существенно ограниченные измеримые функции).

С И Н Г У Л Я Р Н Ы Е П Р Е Д Е Л Ь Н Ы Е РАСПРЕДЕЛЕНИЯ

Рассмотрим простую задачу о колебаниях шарика единичной массы между двумя стенками \(0 \leq \varepsilon \leq \varepsilon \leq a \); предположим, что на шарик действует сила \(f(t) \). Например, можно считать, что шарик заражен и находится в переменном электрическом поле. На первый взгляд эта система относится к типу (1) — внешнее возмущение интегрируемой системы. Однако это не так и задача сводится к анализу параметрических возмущений.

Перейдем к двумиству накрыть отрезка окружностью \(T^n = \{x \mod 2\pi\}, \) вводя угловую пе-
ременную по правилу: \(x = \frac{\pi z}{a} \), когда \(z \) возрастает от 0 до \(a \), и \(x = 2\pi - \frac{\pi z}{a} \), когда \(z \) убывает от \(a \) до 0.
Уравнение движения шарика принимает вид

\[
\dot{x} = -f(t)V_x,
\]
(11)

где \(V(x) = \frac{\pi x}{a} \), когда \(0 < x < \pi \), и \(V(x) = \frac{\pi x}{a} - \frac{2\pi^2}{a} \), когда \(\pi < x < 2\pi \). Задача об эволюции вероятностей меры уравнения (11) более сложная (по сравнению с изучением системы (1)). Она решается лишь при некоторых дополнительных условиях.

Пусть, например, \(f(t) = \text{const} \). Тогда уравнение (11) явно интегрируется и нетрудно показать, что слабый предел плотности вероятности - функция от полной энергии \(\frac{\dot{x}^2}{2} + fV(x) \). Интегрируя по скорости, получаем плотность распределения в конфигурационном пространстве, которая, вообще говоря, не будет постоянной (см. [1]).

Предположим, что функция \(f(t) \) монотонно возрастает при \(t \to +\infty \) и

\[
f f \leq \frac{3}{2} f_x^2.
\]
(12)

Используя метод работы [3], можно показать, что при \(t \to +\infty \) все решения \(x(t) \) уравнения (11) стремятся к точке минимума потенциала \(V(x) \). Следовательно, в этих предположениях предельная плотность распределения положений шарика на отрезке совпадает с дельта-функцией \(\delta(z - a) \).

Эти наблюдения можно обобщить. Пусть \(M^a = \{ x \} \) - компактное конфигурационное пространство механической системы с n степенями свободы, \(T \) - кинетическая энергия - положительно-определенная квадратичная форма по импульсам \(y = (y_1, y_2, \ldots, y_n) \); \(V: M \to \mathbb{R} \) - гладкая функция, а произведение \(f(t)V \) - потенциальная энергия. Фазовое пространство \(\Gamma \) - кокасательное расслоение \(M \), а функция Гамильтона \(H = T + f(t)V \). Пусть \(\rho \) - плотность вероятностного распределения в фазовом пространстве \(\Gamma \), переносимая потоком гамильтоновой системы, и \(\rho_0 \) = \(\rho \) - данное Коши.

Теорема 2. Пусть меру \(pdx\omega \) абсолютно непрерывна относительно меры Линьвилля на \(\Gamma \), функция \(V \) имеет лишь невырожденные критические точки на \(M \), функция \(t \to f(t) \) монотонно возрастает с увеличением \(t \) и выполнено (12).
Если \(\Phi: M \to \mathbb{R} \) - характеристическая функция измеримой области на \(M \), не содержащей точек локального минимума \(V \), то

\[
\int_{\Gamma} \rho,(x, y) \phi(x) d^nxd^\omega \to 0
\]

при \(t \to +\infty \).

Таким образом, предельное распределение ансамбля Гиббса на конфигурационном пространстве \(M \) будет сингулярным: эта мера сосредоточена в конечном числе точек - локальных минимумов функции \(V \). Теорема 2 выводится из результаты работы [3]: при указанных условиях почти все решения уравнений Гамильтона с гамильтоианом \(H = T + fV \) таковы, что \(x(t) \) стремится к одному из локальных минимумов функции \(V \) при неограниченном увеличении времени. При этом (в соответствии с теоремой Линьвилля о сохранении фазового объема гамильтоновых систем) импульсы \(y(t) \) будут неограниченными. Поэтому при стремлении системы к устойчивому равновесию частоты малых колебаний неограниченно возрастают.

Работа выполнена при финансовой поддержке РФФИ (99-01-01096 и 01-01-22004) и INTAS (00-221).

СПИСОК ЛИТЕРАТУРЫ