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Polynomial integrals of reversible mechanical systems

with a two-dimensional torus as the configuration space

N. V. Denisova and V.V. Kozlov

Abstract. The problem considered here is that of finding conditions ensuring that
a reversible Hamiltonian system has integrals polynomial in momenta. The kinetic
energy is a zero-curvature Riemannian metric and the potential a smooth function
on a two-dimensional torus. It is known that the existence of integrals of degrees 1
and 2 is related to the existence of cyclic coordinates and the separation of vari-
ables. The following conjecture is also well known: if there exists an integral of
degree n independent of the energy integral, then there exists an additional integral
of degree 1 or 2. In the present paper this result is established for n = 3 (which
generalizes a theorem of Byalyi), and for n = 4, 5, and 6 this is proved under some
additional assumptions about the spectrum of the potential.

Bibliography: 14 titles.

§ 1. Introduction

In this paper we consider natural mechanical systems with two degrees of free-
dom that have a two-dimensional torus as the configuration space and admit an
additional first integral that is a polynomial with respect to momenta. Such systems
are, of course, completely integrable. Their polynomial integrals are representable
as sums of homogeneous polynomials in momenta with coefficients that are smooth
single-valued functions on the configuration space.

Birkhoff [1] considered a local problem of the existence of linear and quadratic
integrals that are polynomial in velocities. He discovered that the existence of a
linear conditional integral is related to the existence of a ‘hidden’ cyclic coordi-
nate, while a quadratic conditional integral allowed one to separate the canonical
variables. Global versions of these results are known ([2], [3]) in the case when
the configuration space of the system is a two-dimensional torus. The problem of
polynomial integrals of degree at most 2 was discussed also in [4] and [5].

The problem of polynomial integrals of the geodesic flows on two-dimensional
tori has been studied in [6] for metrics that have a trigonometric polynomial as the
conformal factor. It is shown there that if the geodesic flow admits an irreducible
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additional integral polynomial in momenta, then the degree of this polynomial is
at most two. This result was improved in [3].

In [7] the authors discussed the problem of the existence of a complete collection
of independent polynomial integrals for systems with configuration space diffeo-
morphic to the torus Tm = {x1, . . . , xmmod2π}, the kinetic energy

T =
1

2

m∑
i,j

aijẋiẋj, aij = const, (1.1)

and a potential V : Tm → R that is a trigonometric polynomial. They found that
there exists a complete collection of polynomial integrals if and only if the spectrum
of the trigonometric polynomial V lies on k 6 m mutually orthogonal straight
lines through the origin. It that case it was shown that there exist m independent
integrals of degrees at most 2. By Weierstrass’s theorem, trigonometric polynomials
are dense in the space of smooth functions on the torus. Nevertheless, the approach
of [7] cannot be applied to systems with potential of general form.

As pointed out in [8], a natural mechanical system on a two-dimensional torus
with kinetic energy

T =
1

2
(ẋ2

1 + ẋ2
2) (1.2)

can have no irreducible integrals of degree three or four: in these cases it necessarily
has integrals of degrees one or two, respectively. This result has gained recognition
and is often cited (see, for instance, [9]–[11], where this range of problems is dis-
cussed). However, only the proof for integrals of degree three can be found in [8];
moreover, it has a gap, which is fortunately not very essential for metrics of the
form (1.2). Still, if we have a metric of the general form (1.1), then repairing this
gap requires additional effort (we discuss this in greater length in § 4). For integrals
of degree four the method of [8] does not work even in the simplest case of the
metric (1.2).

Polynomial integrals for systems of interacting particles with potentials∑
i<j

f(xi − xj), (1.3)

have been studied in [12]. In all the integrable cases discovered the periodic func-
tion f has poles on the real axis. As shown in [13], if the potential of pairwise
interaction is periodic and has no singularities, then the system with potential
energy (1.3) cannot be completely integrable.

In the present paper we study the problem of polynomial integrals of degree n
with kinetic energy of the general form (1.1) and an arbitrary analytic potential.
We generalize Byalyi’s theorem in the case n = 3 and prove similar results for
n = 4, 5, and 6 under additional assumptions about the spectrum of the potential.

§ 2. Auxiliary results

We consider now a Hamiltonian system whose configuration space is the two-
dimensional torus T2 = {q1, q2 mod2π}. This Hamiltonian system has the following
form:

H =
ap2

1 + 2bp1p2 + cp2
2

2
+W (q1, q2), (2.1)
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where the potential W is a 2π-periodic function in q1 and q2; a, b, and c are real
constants such that a > 0 and ac−b2 > 0. We shall look for a potential W such that
there exists an integral F independent of the energy integral H that is a polynomial
of degree n in momenta, with 2π-periodic coefficients.

Let

W =
+∞∑
−∞

[W ]w1w2e
i(w1q1+w2q2)

be the Fourier series of W . We mean by the spectrum of W the following (generally
speaking, infinite) subset of the integer lattice:

S =
{
w = (w1, w2) ∈ Z2 : [W ]w1w2 6= 0

}
.

The map w→ −w takes this subset into itself.
Assume that there exists a polynomial (in the momentum variables) integral

F = Fn + Fn−1 + Fn−2 + · · ·+ F0

of degree n, where Fk is a homogeneous (in momentum variables) polynomial of
degree k with coefficients that are smooth functions of q1 and q2. Note that the
Poisson bracket of two homogeneous polynomials of degrees r and s in p1, p2 is
a homogeneous polynomial of degree r + s − 1. Hence if F is an integral of a
Hamiltonian system with Hamiltonian (2.1), and then the functions

Φ1 = Fn + Fn−2 + · · · and Φ2 = Fn−1 + Fn−3 + · · ·
are also integrals of this system. Hence we can assume that F is a sum of homoge-
neous polynomials that have only even or only odd degrees.

Conditions for the existence of linear and quadratic integrals are well known
([1]–[3]). For n = 1 the spectrum of W must lie on a straight line passing through
the origin. If n = 2, then the spectrum must lie on two lines orthogonal in the
intrinsic metric generated by the kinetic energy. Note that this is not a standard
situation for metrics of the general form: there do not necessarily exist orthogonal
lines passing through nodes of the integer lattice.

Assume that the spectrum of the potential lies on some straight line. Then
W = f(mq1 + nq2), where m and n are coprime integers and f is a 2π-periodic
function. In that case the system has the integral F1 = mp2 − np1, which is linear
in momenta.

Assume now that W lies on two lines intersecting at right angles at the origin.
Then

W = f1(m1q1 + n1q2) + f2(m2q1 + n2q2),

where we assume that the orthogonality condition is

am1m2 + b(m1n2 +m2n1) + cn1n2 = 0,

and the functions f1 and f2 are, of course, 2π-periodic. Then there exists a qua-
dratic integral

F2 + F0 =
(
a(r1 + r2) + 2b

)
p2

1 + 2(c− ar1r2)p1p2

−
(
c(r1 + r2) + 2br1r2

)
p2

2 + 2(r1 − r2)(f1 − f2),

where ri = mi/ni.
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Let (2.1) be a natural mechanical system admitting an additional independent
integral F of degree n > 3. If n is even, then

F = Fn + Fn−2 + · · ·+ F2 + F0,

where F0 is a function of q1 and q2. If n is odd, then

F = Fn + Fn−2 + · · ·+ F3 + F1.

The kinetic energy can be conveniently put in diagonal form by means of a linear
transformation (

x1

x2

)
= ΓT

(
q1

q2

)
, |Γ| 6= 0.

We now pass to the new variables x1 and x2, which are conformal in the covering
plane of the torus. We extend this to a canonical transformation q, p→ x, y, where(

y1

y2

)
= Γ−1

(
p1

p2

)
.

Then

H = H2 + V (x1, x2), H2 =
y2

1 + y2
2

2
, (2.2)

V =
+∞∑
−∞

[W ]we
i(Γ−1w,x) =

+∞∑
−∞

[W ]we
i(w,q), w ∈ Z2.

Clearly, Γ−1w /∈ Z2 in general: the spectrum of W lies after this transformation in
the nodes of some lattice of parallelograms.

Let

Fn =
n∑
i=0

b
[n]
i yn−i1 yi2,

Fn−2 =
n−2∑
i=0

b
[n−2]
i yn−2−i

1 yi2,

Fn−4 =
n−4∑
i=0

b
[n−4]
i yn−4−i

1 yi2, . . . .

(2.3)

Poincaré showed ([14], see also [11]) that one can assume the functions Fn and
H2 to be independent — otherwise there exists an integral of lower degree. As
proved in [4], Fn and H2 are dependent if and only if

b
[n]
0 − b

[n]
2 + b

[n]
4 − · · · = 0, b

[n]
1 − b

[n]
3 + b

[n]
5 − · · · = 0.

We shall call the sums on the right-hand sides of equalities (2.3) the Birkhoff sums
(see [1]). They are equal to the real and the imaginary parts of Fn for y1 = 1 and
y2 = i.
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Using the Poincaré method one can prove the following results (see [11]; Chap-
ter IV). First, the leading polynomial Fn has constant (in other words, indepen-

dent of x1 and x2) coefficients b
[n]
i . Next, assume that a point with coordinates m1

and m2, m
2
1+m

2
2 6=0, lies in the spectrum of the potential. Then

y2
∂Fn

∂y1
− y1

∂Fn

∂y2
= 0 for m1y1 +m2y2 = 0. (2.4)

An equivalent result: the polynomial

m1
∂Fn

∂y1
+m2

∂Fn

∂y2

is a multiple of m1y1 +m2y2. Let Gm1m2 be the ratio of these polynomials; this is
a homogeneous polynomial of degree n− 2.

Our central result is as follows.

Theorem 1. The following equality holds on the line m1y1 +m2y2 = 0:

m1
∂Gm1m2

∂y1
+m2

∂Gm1m2

∂y2
= 0. (2.5)

This supplements Poincaré’s classical result (2.4). For better understanding of
conditions (2.4) and (2.5) we consider the special case when the spectrum of the
potential lies on the vertical line (m1 = 0). Then the Poincaré condition (2.4) is

equivalent to b
[n]
1 = 0, while (2.5) becomes the equality b

[n]
3 = 0.

Remark. It makes sense to conjecture a more general result: all coefficients of the
polynomial Fn with odd subscripts are equal to zero. Unfortunately, we could
not prove this; in any case this would not enable us to establish completely the
conjecture concerning irreducible integrals that we mentioned in the introduction
(see § 5).

§ 3. Proof of the central result

From the equation {F,H} = 0 we deduce relations on the coefficients of the

integral F . We write down the equations corresponding to the monomials yi1y
j
2

such that i+ j = n + 1. This is a group of n+ 2 equations:

∂b
[n]
j

∂x1
+
∂b

[n]
j−1

∂x2
= 0, j = 0, . . . , n+ 1, b

[n]
−1 = b

[n]
n+1 = 0. (3.1.n)

As already mentioned, these equations have only constant solutions; let

b
[n]
i = a

[n]
i = const, i = 0, . . . , n.

Setting equal to zero the coefficients of monomials yi1y
j
2 such that i+ j = n− 1,

we obtain the following group of n equations:

∂b
[n−2]
j

∂x1
+
∂b

[n−2]
j−1

∂x2
= (n − j)a[n]

j

∂V

∂x1
+ (j + 1)a

[n]
j+1

∂V

∂x2
,

j = 0, . . . , n− 1, b
[n−2]
−1 = b

[n−2]
n−1 = 0. (3.1.n− 2)
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The remaining equations are similar:

∂b
[n−4]
j

∂x1
+
∂b

[n−4]
j−1

∂x2
= (n − 2− j)b[n−2]

j

∂V

∂x1
+ (j + 1)b

[n−2]
j+1

∂V

∂x2
,

j = 0, . . . , n− 3, b
[n−4]
−1 = b

[n−4]
n−3 = 0; (3.1.n− 4)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂b
[n−2l]
j

∂x1
+
∂b

[n−2l]
j−1

∂x2
= (n − 2(l− 1)− j)b[n−2(l−1)]

j

∂V

∂x1
+ (j + 1)b

[n−2(l−1)]
j+1

∂V

∂x2
,

j = 0, . . . , n− 2l+ 1, b
[n−2l]
−1 = b

[n−2l]
n−2l+1 = 0; (3.1.n− 2l)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now, if n is even, then the last group contains two equations:

∂b
[0]
0

∂x1
= 2b

[2]
0

∂V

∂x1
+ b

[2]
1

∂V

∂x2
,

∂b
[0]
0

∂x2
= b

[2]
1

∂V

∂x1
+ 2b

[2]
2

∂V

∂x2
. (3.1.0)

If n is odd, then the last equation is as follows:

0 = b
[1]
0

∂V

∂x1
+ b

[1]
1

∂V

∂x2
. (3.1.−1)

Equations (3.1.n−2) are linear; we can solve them by the Fourier method. Write

V =
+∞∑
−∞

[V ]uve
i(ux1+vx2), b

[n−2]
j =

+∞∑
−∞

[b
[n−2]
j ]uve

i(ux1+vx2), j = 0, . . . , n− 2,

where the [V ]uv and the [b
[n−2]
j ]uv are the Fourier coefficients. It is easy to show

that for each choice of u and v we obtain the system
−u 0 0 . . . 0 0 na

[n]
0 u + a

[n]
1 v

−v −u 0 . . . 0 0 (n− 1)a
[n]
1 u+ 2a

[n]
2 v

0 −v −u . . . 0 0 (n− 2)a
[n]
2 u+ 3a

[n]
3 v

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . −v −u 2a
[n]
n−2u+ (n− 1)a

[n]
n−1v

0 0 0 . . . 0 −v a
[n]
n−1u+ na

[n]
n v




[b

[n−2]
0 ]uv

[b
[n−2]
1 ]uv

[b
[n−2]
2 ]uv
. . .

[b
[n−2]
n−2 ]uv
[V ]uv

 = 0. (3.2)

The system (3.2) has non-trivial solutions only for u and v such that the determi-
nant of the system vanishes. We calculate the determinant of the (n × n)-matrix
expanding it along the last column:

0 = (na
[n]
0 u+ a

[n]
1 v)vn−1 − ((n− 1)a

[n]
1 u+ 2a

[n]
2 v)uvn−2

+ · · ·+ (−1)n(2a
[n]
n−2u+ (n− 1)a

[n]
n−1v)u

n−2v + (−1)n−1(a
[n]
n−1u+ na[n]

n v)un−1.

We can transform this identity. Let z = u/v; then z is a zero of a polynomial of
degree n:

n∑
i=0

(−1)i
(
(i+ 1)a

[n]
i+1 − (n− i+ 1)a

[n]
i−1

)
zi = 0. (3.3)
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Here the constants a
[n]
j (where a

[n]
−1 = a

[n]
n+1 = 0) are such that (3.3) has at least

one real root zm = um/vm. Let V be a function of the following form:

V =
n∑

m=1

fm(umx1 + vmx2),

where

fm =
+∞∑
λ=−∞

[V ]λum,λvme
iλ(umx1+vmx2),

that is, assume that the spectrum of V lies on at most n straight lines in the real
plane. We shall call these lines containing the spectrum of V the spectrum lines
of V . Consider, for instance, the kth line. Rotating the plane about the origin
we can make this line vertical. Extending this to a canonical transformation we
obtain a Hamiltonian function of the kind (2.2), but the potential energy now has
the following form:

V = fk(vkx2) +
n∑

m=1
m6=k

fm(umx1 + vmx2). (3.4)

Note that

∂fm

∂x2
= vmf

′
m =

vm

um

∂fm

∂x1
, m = 1, . . . , n, m 6= k.

Here the dash indicates the derivative with respect to the argument of the function.
From the first three equations in (3.1.n − 2) we shall determine the functions

b
[n−2]
0 and b

[n−2]
1 . To this end we write down explicitly the first three equations in

the group (3.1.n− 2), where a
[n]
1 = 0:

∂b
[n−2]
0

∂x1
= na

[n]
0

∂V

∂x1
, (3.5)

∂b
[n−2]
1

∂x1
+
∂b

[n−2]
0

∂x2
= 2a

[n]
2

∂V

∂x2
, (3.6)

∂b
[n−2]
2

∂x1
+
∂b

[n−2]
1

∂x2
= (n− 2)a

[n]
2

∂V

∂x1
+ 3a

[n]
3

∂V

∂x2
. (3.7)

We can express b
[n−2]
0 from (3.5):

b
[n−2]
0 = na

[n]
0 V + c

[n−2]
0 (x2),

where c
[n−2]
0 is a function of x2 alone. We can find this function from (3.6):

∂b
[n−2]
1

∂x1
+ na

[n]
0

(
dfk

dx2
+

n∑
m=1
m6=k

vm

um

∂fm

∂x1

)
+
dc

[n−2]
0

dx2
= 2a

[n]
2

(
dfk

dx2
+

n∑
m=1
m6=k

vm

um

∂fm

∂x1

)
.
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This is an equation of the following form:

∂∆

∂x1
+

(
dc

[n−2]
0

dx2
− (2a

[n]
2 − na

[n]
0 )

dfk

dx2

)
= 0, (3.8)

where

∆ = b
[n−2]
1 − (2a

[n]
2 − na

[n]
0 )

( n∑
m=1
m6=k

vm
um

fm

)
.

It is clear that the only functions in (3.8) containing harmonics of the form eiνx2

are c
[n−2]
0 and f ′k. They satisfy the equation

dc
[n−2]
0

dx2
− (2a

[n]
2 − na

[n]
0 )

dfk

dx2
= 0.

This gives us c
[n−2]
0 :

c
[n−2]
0 = (2a

[n]
2 − na

[n]
0 )fk + a

[n−2]
0 ,

where a
[n−2]
0 = const. Thus, we have found b

[n−2]
0 :

b
[n−2]
0 = na

[n]
0 V + (2a

[n]
2 − na

[n]
0 )fk + a

[n−2]
0 . (3.9)

From equation (3.6) we can determine b
[n−2]
1 . Recall that we have transformed the

function (3.6) to the form (3.8), where

∂∆

∂x1
= 0.

Here

b
[n−2]
1 = (2a

[n]
2 − na

[n]
0 )

( n∑
m=1
m6=k

vm
um

fm

)
+ c

[n−2]
1 (x2),

where c
[n−2]
1 is a function of x2 alone. We get it from equation (3.7) after writing

it down explicitly:

∂b
[n−2]
2

∂x1
+ (2a

[n]
2 − na

[n]
0 )

( n∑
m=1
m6=k

(
vm
um

)2
∂fm
∂x1

)
+
dc

[n−2]
1

dx2

= (n − 2)a
[n]
2

∂V

∂x1
+ 3a

[n]
3

(
dfk

dx2
+

n∑
m=1
m6=k

vm

um

∂fm

∂x1

)
.

This is an equation of the following form:

∂Υ

∂x1
+

(
dc

[n−2]
1

dx2
− 3a

[n]
3

dfk

dx2

)
= 0, (3.10)
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where

Υ = b
[n−2]
2 + (2a

[n]
2 − na

[n]
0 )

( n∑
m=1
m6=k

(
vm
um

)2

fm

)
− (n− 2)a

[n]
2 V − 3a

[n]
3

( n∑
m=1
m6=k

vm
um

fm

)
.

The only functions in equation (3.10) containing harmonics of the form eiνx2 are

c
[n−2]
1 and f ′k. For these functions we have the equation

dc
[n−2]
0

dx2
− 3a

[n]
3

dfk

dx2
= 0.

This gives us c
[n−2]
1 :

c
[n−2]
1 = 3a

[n]
3 fk + a

[n−2]
1 ,

where a
[n−2]
1 = const. Thus, we have found b

[n−2]
1 :

b
[n−2]
1 = 3a

[n]
3 fk + (2a

[n]
2 − na

[n]
0 )

( n∑
m=1
m6=k

vm

um
fm

)
+ a

[n−2]
1 . (3.11)

We now proceed to the first equation in the group (3.1.n− 4). Substituting for

b
[n−2]
0 and b

[n−2]
1 in this equation their expressions (3.9) and (3.11) we obtain

∂b
[n−4]
0

∂x1
= (n − 2)

(
na

[n]
0 V + (2a

[n]
2 − na

[n]
0 )fk + a

[n−2]
0

) ∂V
∂x1

+

(
3a

[n]
3 fk + (2a

[n]
2 − na

[n]
0 )

n∑
m=1
m6=k

vm

um
fm + a

[n−2]
1

)(
dfk

dx2
+

n∑
m=1
m6=k

vm

um

∂fm

∂x1

)

= n(n− 2)a
[n]
0

1

2

∂V 2

∂x1
+ (n− 2)(2a

[n]
2 − na

[n]
0 )

∂fkV

∂x1
+ (n− 2)a

[n−2]
0

∂V

∂x1

+ (3a
[n]
3 fk + a

[n−2]
1 )

dfk

dx2
+ (2a

[n]
2 − na

[n]
0 )

dfk

dx2

( n∑
m=1
m6=k

vm

um
fm

)

+ 3a
[n]
3

n∑
m=1
m6=k

vm

um

∂fkfm

∂x1
+ (2a

[n]
2 − na

[n]
0 )

1

2

∂

∂x1

(( n∑
m=1
m6=k

vm

um
fm

)2)

+ a
[n−2]
1

n∑
m=1
m6=k

vm

um

∂fm

∂x1
.

This equation has the following form:

∂Ψ

∂x1
+ (3a

[n]
3 fk + a

[n−2]
1 )

dfk

dx2
+ (2a

[n]
2 − na

[n]
0 )

dfk

dx2

( n∑
m=1
m6=k

vm

um
fm

)
= 0, (3.12)



198 N. V. Denisova and V. V. Kozlov

where

Ψ =
n(n− 2)

2
a

[n]
0 V 2 + (n− 2)(2a

[n]
2 − na

[n]
0 )fkV + (n− 2)a

[n−2]
0 V

+ (3a
[n]
3 fk + a

[n−2]
1 )

( n∑
m=1
m6=k

vm
um

fm

)
+

1

2
(2a

[n]
2 − na

[n]
0 )

( n∑
m=1
m6=k

vm
um

fm

)2

− b[n−4]
0 .

Clearly the only functions in (3.12) containing harmonics of the form eiνx2 are
f ′k and fkf

′
k. For fk we have the following equation:

(3a
[n]
3 fk + a

[n−2]
1 + κ)vkf

′
k = 0, (3.13)

where κ is the mean value of

(2a
[n]
2 − na

[n]
0 )

( n∑
m=1
m6=k

vm

um
fm

)
.

By assumption fk is a non-constant analytic function. Since the ring of analytic

functions contains no zero divisors, it follows that a
[n]
3 = 0, as required.

§ 4. Integrals of degree three

Theorem 2. If a system with Hamiltonian (2.1) admits an integral F3 + F1 of
degree three with F3 6= 0, then the spectrum of the potential energy lies on a single
line passing through the origin.

Corollary. Under the assumptions of Theorem 2 the Hamiltonian equations have
an integral linear in momenta.

For a = c and b = 0, Theorem 2 becomes Byalyi’s theorem [8].

Proof of Theorem 2. Since F3 6= 0, the algebraic equation (3.3) has at most three
real roots. Thus, the number of spectrum lines of the potential energy is at most
three.

The case where the spectrum lies on two lines has been considered in [11]; Chap-
ter IV. It is shown there that the Hamiltonian equations admit an additional poly-
nomial integral if and only if these lines are orthogonal (with respect to the metric
generated by the kinetic energy). We emphasize that this holds for integrals of arbi-
trary degree. If the spectrum lines are orthogonal, then there exists a polynomial
integral of degree two. It remains to show that there are no non-trivial integrals of
degree three in this case.

Assume the contrary: let F3 + F1 be an integral of degree three and let

F3 = a0y
3
1 + a1y

2
1y2 + a2y1y

2
2 + a3y

3
2 . (4.1)

Rotating, we can make one spectrum line vertical. Then the other line is horizontal,
because of orthogonality. By (2.4), a1 = a2 = 0. Using Theorem 1 we obtain two
additional relations: a0 = a3 = 0. Hence F3 ≡ 0, which is a contradiction.
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Remark. The case where the spectrum lies on two straight lines was not discussed
in [8] — probably for reasons of space.

Now it remains to consider the case of three distinct spectrum lines. We assume
that one of these lines is vertical. Then a1 = a3 = 0 in (4.1). Let (u, v) be a point
in the spectrum with u 6= 0. Relations (2.4) and (2.5) bring us to the equalities

3a0v
2 + a2(u

2 − 2v2) = 0 and a0u
2 + a2v

2 = 0. (4.2)

Since a0 and a2 must be distinct from zero (otherwise F3 = 0), the determinant of
this linear system vanishes:

3v4 + 2u2v2 − u4 = 0, or 3z4 + 2z2 − 1 = 0, (4.3)

where z = v/u. The roots of this biquadratic equation are ±
√

3/3. Thus, the
angles between the spectrum lines are π/3. Now, each equation in (4.2) gives rise
to the following relation between the remaining coefficients a0 and a2:

3a0 + a2 = 0. (4.4)

Remark. This is the case left out in [8], where Byalyi introduces the quantities

kii = ui(a1 + 3a3 + zi(3a0 + a2)),

where the zi = vi/ui are the zeros of (3.3), and he assumes that only one of
these quantities may vanish. In the above case, however, kii = 0 for 1 6 i 6 3.
Still, it must be pointed out that the metric considered in [8] has the standard
form (1.2), therefore (since the biquadratic equation (4.3) has irrational roots)
oblique spectrum lines cannot pass through nodes of the integral lattice.

Thus, it remains to consider the exceptional case when the angles between the
three spectrum lines of the potential energy are multiples of π/3. The Hamiltonian
function can be reduced to the following form:

H =
(y2

1 + y2
2)

2
+ f1(

√
3 x1 + x2) + f2(x2) + f3(−

√
3x1 + x2),

where the fs are non-constant periodic analytic functions.
The additional third-degree integral F has the form F3 + b0y1 + b1y2, where b0

and b1 are analytic functions on the configuration torus. In our case a1 = a3 = 0
and (4.4) holds. Since F3 6= 0, we can set a0 = 1 and a2 = −3.

The functions fs are defined up to arbitrary additive constants. We shall assume
that 〈f2〉 = 0, where 〈 · 〉 denotes the mean value on the torus T2 = {x1, x2 mod2π}.
Since f2 is a periodic function, there exists x0

2 such that f ′2(x
0
2) = 0. We set

〈f1〉 = −〈f3〉,
〈f3〉√

3
= −f2(x0

2) +
〈b0〉
6

. (4.5)

The condition {H,F}= 0 is equivalent to the following system of equations for
b0 and b1:

∂b0
∂x1

+ 3
√

3 (f ′3 − f ′1) = 0,
∂b0
∂x2

+
∂b1
∂x1

+ 6(f ′1 + f ′2 + f ′3) = 0,

∂b1

∂x2
− 3
√

3 (f ′3 − f ′1) = 0,
√

3 b0(f
′
3 − f ′1) − b1(f ′1 + f ′2 + f ′3) = 0.

(4.6)



200 N. V. Denisova and V. V. Kozlov

The first and the third equations give us the equalities

b0 = 3[f1 + f3 + a0(x2)] and b1 = 3
√

3 [f3 − f1 + a1(x1)], (4.7)

where a0 and a1 are periodic functions of one variable that are not yet known.
Substituting (4.7) in the second equation in (4.6) we obtain

da0

dx2
+
√

3
da1

dx1
+ 2f ′2 = 0.

Averaging with respect to x1 and x2 we see that a0 = −2f2 + c0, c0 = const, and
a1 = c1 = const.

Now, equalities (4.7) take the following form:

b0 = 3(f1 − 2f2 + f3 + c0), b1 = 3
√

3 (f3 − f1 + c1). (4.8)

Substituting (4.8) in the last equation in (4.6) we obtain a non-trivial relation
between the functions fs:

2f ′1

(
f2 − f3 −

c0

2

)
+ f ′2(f1 − f3 − c1) + 2f ′3

(
f1 − f2 +

c0

2
− c1

2

)
= 0. (4.9)

We set x2 = x0
2 and

g1(x1) = f1(
√

3 x1 + x0
2)− f2(x

0
2) +

c0

2
− c1

2
,

g3(x1) = f3(−
√

3x1 + x0
2)− f2(x

0
2) +

c0

2
.

(4.10)

Since x0
2 is a critical point of f2, equality (4.9) takes the following form:

∂

∂x1
(g1g3) = 0.

Hence
g1g3 = c = const . (4.11)

Averaging the first equality in (4.8) over T2 we obtain

〈b0〉 = 3(〈f1〉 − 2〈f2〉+ 〈f3〉+ c0).

By assumption 〈f1〉+〈f3〉 = 0 (see (4.5)) and 〈f2〉 = 0. Hence c0 = 〈b0〉/3. Clearly,

〈g3〉 = −〈f3〉√
3
− f2(x

0
2) +

〈b0〉
6

.

In view of (4.5), the right-hand side of this equality vanishes. Since g3 is a periodic
function of mean value zero, it must have zeros. Hence the constant c in equal-
ity (4.11) is zero. The ring of analytic functions contains no zero divisors, therefore
either g1 or g3 vanishes identically. Then, however, (4.10) shows that one of the
functions f1 and f3 is constant. Hence (4.9) has no non-trivial periodic solutions,
which completes the proof.

Remark. Equation (4.9) has aperiodic solutions. One simple example is as follows:

f1 = exp(
√

3 x1 + x2), f2 = exp(−2x2), f3 = exp(−
√

3x1 + x2),

and the constants c0 and c1 are equal to zero. This corresponds to the case of an
integrable Toda lattice for three particles with centre of mass separated out.
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§ 5. Integrals of degree four

Assume that equations with Hamiltonian (2.1) admit a four-degree integral
F4 + F2 + F0, where

F4 = a0y
4
1 + a1y

3
1y2 + a2y

2
1y

2
2 + a3y1y

3
2 + a4y

4
2. (5.1)

We can assume without loss of generality that one of the spectrum lines is vertical.
Then the results of § 2 show that a1 = a3 = 0.

Let (u, v), u 6= 0, be a point in the spectrum. Conditions (2.4) and (2.5) give us
the relations

2a0v
3u+ a2(u

3v − uv3) − 2a4u
3v = 0,

2a0vu
3 + a2(uv

3 − u3v) − 2a4uv
3 = 0.

(5.2)

They are trivially satisfied if v = 0. Hence the existence of a horizontal spectrum
line is not an obstacle to the integrability of the system in question.

What other straight lines can be spectrum lines in the case of an integral of
degree four? Dividing the left-hand sides of equations (5.2) by uv and adding up
we obtain

2(a0 − a4)(u
2 + v2) = 0.

Hence a0 = a4. Now, each equation in (5.2) can be brought into the following form:

(2a0 − a2)(u
2 − v2) = 0,

therefore 2a0 = a2 or u = ±v. In the first case the Birkhoff sum a0−a2+a4 is equal
to zero. Bearing in mind the equalities a1 = a3 = 0 we see that the polynomial F4

is a multiple of the kinetic energy (y2
1 + y2

2)/2. However, we have already excluded
this case (see § 2). Hence u = ±v. This means that the bisectors of the coordinate
sectors are also ‘admissible’ spectrum lines.

Thus, we have proved the following result.

Proposition 1. If a system with Hamiltonian (2.1) admits an irreducible integral
of degree four, then its spectrum lies on three or four straight lines making angles
π/4 or π/2 with one another.

This result leaves out the system with Hamiltonian

H =
(y2

1 + y2
2)

2
+ f1(x1) + f2(x1 + x2) + f3(x2) + f4(x2 − x1).

Here the fs are 2π-periodic functions at least three of which are not constant. An
integral of degree four independent of the energy integral can be brought to the
following form:

F =
(y4

1 + y4
2)

4
+ F2 + F0.

From the condition {H,F} = 0 we deduce (as in § 4) the following relation for the
functions fs, which is similar to (4.9):

f ′′1 f2 + 3f ′1f
′
2 + 2f1f

′′
2 − f ′′1 f4 + 3f ′1f

′
4 − 2f1f

′′
4 − f2f

′′
3 − 3f ′2f

′
3 − 2f ′′2 f3

+ f ′′3 f4 + 3f ′3f
′
4 + 2f3f

′′
4 + c1(f

′′
1 − f ′′3 ) + c2(f

′′
2 − f ′′4 ) = 0. (5.3)

Here the dash indicates the derivative with respect to the argument of the function
and c1 and c2 are constants. Unfortunately, we have not managed to show that
equation (5.3) has no non-trivial periodic solutions. Note that (5.3) has aperiodic
solutions.
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§ 6. Integrals of degree five or six

Assume now that a system with Hamiltonian (2.1) admits a fifth-degree integral
F5 + F3 + F1, where

F5 = a0y
5
1 + a2y

3
1y

2
2 + a4y1y

4
2 + a5y

5
2 . (6.1)

As before, we assume that one of the spectrum lines is vertical (so that we set from
the start a1 = a3 = 0 in (6.1)). If the integral is irreducible, then there must be
at least one extra spectrum line. Assume that it contains a point in the spectrum
with coordinates u, v (u 6= 0). Relations (2.4) and (2.5) give us two equations:

γz4 + δz2 + a4 + 5a5z = 0,

6γz2 + δ(3z4 − 2z2 + 1) + a4(10z2 + 4) + 30a5z
3 = 0.

(6.2)

Here γ = 5a0 − 2a2, δ = 3a2 − 4a4, z = v/u.
In fact, if the spectrum is irreducible, then there must be a third line. For it is

shown in [11] that if the spectrum lies on two lines that are not orthogonal, then
there can be no additional polynomial integrals of any degree whatsoever. On the
other hand, if the two spectrum lines are orthogonal, then there exists a quadratic
integral, and the above integral of degree five must be reducible.

Assume that the third spectrum line contains a point with coordinates u1 and v1

(u1 6= 0) and let z1 = v1/u1. Then z1 6= z satisfies the same equations (6.2). Thus,
we obtain a system of homogeneous linear equations with respect to γ, δ, a4, and a5.
If the determinant ∆ of this system does not vanish, then F5 = 0 and the integral
is reducible.

The determinant ∆ is as follows:

30(z2 + 1)(z2
1 + 1)(z− z1)

2(z+ z1)[z
2z2

1 +(2zz1 + 1)2− (2zz1 + 1)(z2 + z2
1)]. (6.3)

Since z 6= z1, it vanishes in the following two cases:

(a) z1 = −z, (b) z2z2
1 + (2zz1 + 1)2 − (2zz1 + 1)(z2 + z2

1) = 0.

In case (a) the additional spectrum lines are symmetric with respect to the first
vertical line. The equation in case (b) is easily soluble if one sets 2zz1 + 1 = x.
Then x2 − x(z2 + z2

1) + z2z2
1 = 0. Hence x = z2 or x = z2

1 , and therefore

2zz1 + 1 = z2 or 2zz1 + 1 = z2
1 . (6.4)

In the first case

z1 = −
(

2z

1− z2

)−1

. (6.5)

Assume that the second (the third) spectrum line runs at angle ϕ (ϕ1) to the
horizontal axis. Then (6.5) is equivalent to the relation

ϕ1 = 2ϕ± π/2.
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This gives us a simple construction of the third spectrum line: we rotate the second
line by angle ϕ counterclockwise and draw the orthogonal line. The second equation
in (6.4) has a similar geometric interpretation.

Note that each of the last two spectrum lines can also be distinguished (and set
to be vertical). Then the mutual position of the remaining two lines must also have
the above properties. In particular, assume that the vertical and the horizontal axes
contain points from the spectrum. Then the third spectrum line makes angle π/4
with the horizontal axis.

Let l0, l1, and l2 be straight lines through some point; we assume that l0 is
vertical. Let z and z1 be the slopes of l1 and l2 (the tangents of their angles with
the horizontal axis). We shall say that l2 is conjugate to l1 with respect to l0 (and
write l1 → l2) if z and z1 are related by the equality

z1 =
z2 − 1

2z
.

Note that this conjugacy relation is neither reflexive nor transitive.
We can state the above results on the structure of the structure of the spectrum

of a Hamiltonian system possessing an irreducible integral of degree 5 as follows.
Let l0, l1, and l2 be three arbitrary spectrum lines. Then l1 and l2 are symmetric
relative to l0, or l1 → l2, or l2 → l1.

As one example we consider the case when the spectrum lies on five lines, each
making angle π/5 with the preceding one. We denote them by l0, l1, . . . , l4 (Fig. 1).
We claim that the necessary condition for the existence of an irreducible integral of
degree 5 is satisfied in this case. For the table of the conjugacy relations existing
between these lines (with respect to l0, for definiteness) looks as follows:

l0 → l0, l1 → l2, l2 → l4, l3 → l1, l4 → l3.

Figure 1
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We fix l0. Then we can choose two other spectrum lines by one of the six ways:

l1 and l4, l2 and l3, l1 and l2, l1 and l3, l2 and l4, l3 and l4.

In the first two cases the two lines are symmetric relative to l0, and in the remaining
cases one line in the pair is conjugate to the other.

We now discuss the problem of an integral of degree six. It must have the form
F6 + F4 + F2 + F0, where

F6 = a0y
6
1 + a2y

4
1y

2
2 + a4y

2
1y

4
2 + a5y1y

5
2 + a6y

6
2 . (6.6)

We assume that one spectrum line is vertical, so that (6.6) contains no coefficients a1

and a3.
We can also assume that, alongside the vertical line, there exist two additional

distinct spectrum lines defined by their slopes z and z1. By (2.4) and (2.5) the
real-valued slope z satisfies the equations

6a0z
5 + (−2z5 + 4z3)a2 + (−4z3 + 2z)a4 + (5z2 − 1)a5 − 6a6z = 0, (6.7)

10a0z
3 + (2z5 − 6z3 + 2z)a2 + (−2z5 + 6z3 − 2z)a4 + (5z4 − 5z2)a5 − 10a6z

3 = 0.
(6.8)

It is convenient to introduce the variables

γ1 = 6a0 − 2a2, γ2 = 4a2 − 4a4, γ3 = 2a4 − 6a6. (6.9)

In this notation equations (6.7) and (6.8) get a simpler form:

γ1z
5 + γ2z

3 + γ3z + a5(5z
2 − 1) = 0,

10γ1z
3 + γ2(3z

5 − 4z3 + 3z) + 10γ3z
3 + a5(30z4 − 30z2) = 0.

Obviously, the same relations hold for z1. Thus, we obtain a homogeneous linear
system with respect to γ1, γ2, γ3, and a5. If its determinant is distinct from zero,
then these parameters must vanish. Since a1 = a3 = 0 and we have (6.9), both
Birkhoff sums

a1 − a3 + a5 and a0 − a2 + a4 − a6

vanish in that case, which means that F6 is a multiple of (y2
1 + y2

2)/2 (the kinetic
energy of the system).

The above determinant is equal to

zz1(zz1 + 1)∆, (6.10)

where ∆ is defined by (6.3). Hence we can determine the possible position of the
two remaining spectrum lines from the condition that the product (6.10) vanishes.
We have already analyzed the condition ∆ = 0 in our discussion of integrals of
degree five. In the present case we have two additional relations: zz1 = 0 and
zz1 + 1 = 0. The first shows that one spectrum line can be horizontal, and the
second is the orthogonality condition for two spectrum lines.
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Now let l0, l1, and l2 be three arbitrary spectrum lines of a Hamiltonian sys-
tem. If it possesses an irreducible integral of degree six, then one of the following
conditions must hold:

(a) l1 or l2 is orthogonal to l0,
(b) l1 is orthogonal to l2,
(c) l1 and l2 are symmetric relative to l0,
(d) l1 → l2 or l2 → l1 (with respect to l0).

We consider now the example when six spectrum lines make angle π/6 with one
another. We fix one of them, say l0. Then there exist 10 ways to select l1 and l2.
It is easy to verify that in each case one of conditions (a)–(d) is satisfied.

§ 7. On integrals of arbitrary degrees

There exists another approach to the problem of integrals polynomial inmomenta.
Assume that the spectrum of the potential energy lies on n distinct straight lines
passing through the origin. As pointed out in § 2, the dynamical system admits no
non-trivial additional integrals of degree k < n in this case. Hence the minimum
possible degree of an additional polynomial integral is n.

On the other hand we showed in § 4 that if a system admits an integral of degree
three and there are three distinct spectrum lines, then they make angles π/3 with
one another. A similar observation holds for integrals of degree four: the four
possible spectrum lines make angles π/4 with one another. It turns out that this
observation can be generalized.

Theorem 3. If there exists a polynomial integral of degree n independent of the
energy integral, then the n spectrum lines of the potential energy make angles

π

n
,

2π

n
, . . . ,

(n− 1)π

n

with one another.

This indicates an interesting connection between a continuous symmetry group
(related to the additional integral) and discrete symmetries of a dynamical system.

Theorem 3 has an interesting application to systems with ‘standard’ metric (1.2).

Corollary. Assume that a Hamiltonian system with kinetic energy (1.2) has spec-
trum lying on n 6= 4 distinct straight lines passing through the origin. Then the
system has no additional polynomial integral of degree n.

In fact it is well known that the quantities tan(π/n) are irrational for n > 3,
n 6= 4. The difficulties arising in the special case n = 4 were expounded in § 5.

Proof of Theorem 3. Let

Fn = a0y
n
1 + a1y

n−1
1 y2 + · · ·+ any

n
2

be the leading homogeneous component of the assumed polynomial integral of
degree n. Suppose that the spectrum contains a point with coordinates u, v. We
can always assume that v 6= 0 (by rotating the plane about the origin). The
ratio z = u/v defines the spectrum line containing the point (u, v). By assumption,
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we are given n distinct quantities z1, . . . , zn obtained in this way. By (2.4) and (2.5)
all these quantities are roots of the following two polynomials of degree n:

0 =
n∑
i=0

zi
(
(−1)iC1

i+1ai+1 + (−1)i−1C1
n−i+1ai−1

)
, (7.1)

0 =
n∑
i=0

zi
(
(−1)iC3

i+3ai+3 + (−1)i−1C1
n−i−1C

2
i+1ai+1

+ (−1)i−2C2
n−i+1C

1
i−1ai−1 + (−1)i−3C3

n−i+3ai−3

)
. (7.2)

Hence their coefficients are proportional. Let ω be the ratio of the corresponding
coefficients of (7.1) and (7.2).

Let n = 2m. The case of odd n can be considered in a similar way (and is even
simpler). The condition that the coefficients are proportional can be expressed as
the combination of two closed systems of linear equations:

ω(−C1
2j+2a2j+2 + C1

n−2ja2j) = −C3
2j+4a2j+4 +C1

n−2j−2C
2
2j+2a2j+2

− C2
n−2jC

1
2ja2j +C3

n−2j+2a2j−2, (7.3)

where j = 0, . . . , m− 1, and

ω(C1
2j+1a2j+1 −C1

n−2j+1a2j−1) = C3
2j+3a2j+3 −C1

n−2j−1C
2
2j+1a2j+1

+ C2
n−2j+1C

1
2j−1a2j−1 −C3

n−2j+3a2j−3, (7.4)

where j = 0, . . . , m.
We multiply each equation in (7.3) by (−1)j and add them, arriving at the

relation
(ωC1

n + C3
n)[a0 − a2 + a4 − · · ·+ (−1)ma2m] = 0. (7.5)

In a similar way, by (7.4) we obtain

(ωC1
n +C3

n)[a1 − a3 + a5 − · · ·+ (−1)m−1a2m−1] = 0. (7.6)

The expressions in the square brackets in (7.5) and (7.6) are the Birkhoff sums
for Fn. Since Fn is not a multiple of (y2

1 + y2
2)/2 (by assumption), at least one of

these sums is distinct from zero. Hence

ω = −C3
n/C

1
n. (7.7)

Substituting this in (7.4) with j = 0 we obtain

a1 = αC1
n, a3 = −αC3

n,

where α is a real constant distinct from zero. Using relations (7.4) and taking
account of (7.7) we successively find the a-coefficients with odd indices:

a2j+1 = (−1)jαC2j+1
n , 0 6 j 6m− 1.
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Hence
C1

2j+1a2j+1 −C1
n−2j+1a2j−1 = (−1)jαnC2j

n . (7.8)

Relation (7.3) with j = 0, in view of (7.7), gives us

−C1
2a2 + C1

na0 = βC1
n,

where β is a real coefficient distinct from zero.
By (7.3) and (7.7) we successively obtain

−C1
2j+2a2j+2 +C1

n−2ja2j = (−1)jβC2j+1
n . (7.9)

Relations (7.8) and (7.9) enable us to bring algebraic equation (7.1) into the
following form:

nα

m∑
j=0

(−1)jC2j
n z

2j + β

m−1∑
j=0

(−1)jC2j+1
n z2j+1 = 0. (7.10)

Bearing in mind that z = tanϕ, where ϕ is the angle between the spectrum line
and the horizontal axis, by (7.10) we obtain the equation

nα cosnϕ − β sinnϕ = 0. (7.11)

Since α and β are distinct from zero, its solutions are the n angles cited in Theo-
rem 3, as required.
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