Интегральные инварианты после Пуанкаре и Картана*

А. Основы общей теории интегральных инвариантов заложены А. Пуанкаре в III-ем томе его «Новых методов небесной механики» [1]. Важные конкретные примеры интегральных инвариантов были известны, конечно, и до Пуанкаре (например, знаменитая теорема Томсона из гидродинамики о сохранности циркуляции). Теория Пуанкаре развита и дополнена Э. Картаном [2].

Напомним сначала основные определения в современных обозначениях. Пусть

$$\dot{x} = v(x), \quad x \in M^n,$$

— гладкая динамическая система на многообразии M. Производную Ли вдоль векторного поля v будем обозначать L_v. По формуле гомотопии

$$L_v = di_v + iv d.$$

Пусть φ — k-форма, γ — k-цепь, g^t_v — фазовый поток системы (1). Справедлива простая формула (см., например, [3, гл. VII]):

$$\left.\frac{d}{dt}\right|_{t=0} \int_{g^t(\gamma)} \varphi = \int_\gamma L_v \varphi.$$

Таким образом, если

$$L_v \varphi = 0,$$

то интеграл

$$I[\gamma] = \int_\gamma \varphi$$

будет абсолютным интегральным инвариантом для системы (1):

$$I[g^t(\gamma)] = I[\gamma] \quad \forall t \in \mathbb{R}.$$

Если

$$L_v \varphi = d\psi,$$

где ψ — некоторая $(k-1)$-форма, то равенство (4) справедливо для любого k-цикла γ: $\partial \gamma = 0$. В этом случае интеграл (3) называется относительным интегральным инвариантом.

*Работа написана при финансовой поддержке INTAS (проект “Symmetry and cohomology approach to equations of mechanics and mathematical physics; № 96-0793”).
ДОБАВЛЕНИЕ

Разделение интегральных инвариантов на абсолютные и относительные, предложенные Пуанкаре, не охватывает все интересные случаи. Например, может оказаться, что

$$L_v \varphi = \psi, \quad d\psi = 0,$$

(6)

причем k-форма ψ не является точной. В этом случае равенство (4) имеет место для любого k-мерного цикла, гомологического нулю. Такой интегральный инвариант назовем условным.

Приведем простой пример линейного интегрального инварианта, который является условным, но не относительным. Пусть

$$M^2 = T \times \mathbb{R} = \{ q \mod 2\pi, p \},$$

$$\dot{q} = 0, \quad \dot{p} = 1; \quad \varphi = pdq.$$

Тогда

$$L_v \varphi = i_v d\varphi = dq.$$

Форма $\psi = dq$ замкнута, но не точна. Поэтому,

$$\hat{I}[g'(\gamma)] = 2\pi$$

для любого замкнутого контура γ, «охватывающего» цилиндр M

(например, $\gamma = \{ 0 \leq q < 2\pi, \ p = 0 \}.$)

Пусть k-форма φ порождает условный или относительный интегральный инвариант. Тогда $(k + 1)$-форме $d\varphi$, очевидно, отвечает абсолютный инвариант.

Действительно,

$$L_v d\varphi = dL_v \varphi = d\psi = 0.$$

Это замечание фактически принадлежит Пуанкаре [1, п. 238].

Б. Эли Картан вкладывает в понятие интегрального инварианта несколько иной смысл. По Картану абсолютные интегральные инварианты порождаются дифференциальными формами α, такими, что

$$i_v \alpha = i_v d\alpha = 0.$$

(7)

Такие формы Картан называет во введении к своей книге интегральными формами. Ввиду формулы гомотопии, из (7) сразу вытекает равенство $L_v \alpha = 0$.

Относительные интегральные инварианты порождаются (по Картану) формами α, такими, что

$$i_v d\alpha = 0.$$

(8)

Равенство (8) дает

$$L_v \alpha = di_v \alpha + i_v d\alpha = d\beta,$$

где $\beta = i_v \alpha$. Таким образом, получаем частный случай относительного интегрального инварианта по Пуанкаре.
Подход Картана к теории интегральных инвариантов кажется более узким по сравнению с подходом Пуанкаре. Однако, как пишет Картан во введении к своей книге, «…оказывается, что понятие интегральной формы не отличается существенно от понятия интегрального инварианта. Сопоставление этих двух понятий легко в основу настоящего труда».

О сновная идея Картана основана на расширении фазового пространства M путем добавления нового независимого переменного времени t. В расширенном $(n + 1)$-мерном пространстве $\tilde{M} = M \times \mathbb{R}$ уравнение (1) заменяется системой

$$\dot{x} = v(x), \quad \dot{t} = 1. \quad (9)$$

Предложение 1. Пусть k-форма φ порождает абсолютный инвариант системы (1) по Пуанкаре. Тогда система (9) допускает абсолютный инвариант по Картану с k-формой

$$\alpha = \varphi + (-1)^k (i_\varphi \varphi) \wedge dt.$$

Доказательство сводится к проверке двух равенств: $i_{\tilde{v}} \alpha = 0$ и $L_{\tilde{v}} \alpha = 0$, где \tilde{v} — векторное поле на расширенном пространстве, задаваемое уравнениями (9). Предложение 1 фактически принадлежит Картану ([2], п. 30), только вместо явной формулы для α Картан приводит правило ее вывода: в выражение для формы φ вместо дифференциалов dx_i надо подставить разности $dx_i - v_i dt$.

Как заметил Картан ([2], п. 32), в общем случае предложение 1 не справедливо для относительных инвариантов. Мы дополним наблюдение Картана следующим утверждением.

Предложение 2. Пусть k-форма φ порождает условный интегральный инвариант по Пуанкаре системы (1): $i_\varphi d\varphi = dv$. Тогда система (9) допускает условную инвариантную k-форму по Картану: $i_{\tilde{v}} d\alpha = 0$, где

$$\alpha = \varphi + (-1)^{k-1} \psi \wedge dt. \quad (10)$$

Сам Картан фактически использовал формулу (10) в некоторых конкретных ситуациях. Однако, в общем случае он предлагал действовать по-другому ([2], п. 32): если система (1) допускает условный инвариант, то она допускает и абсолютный инвариант (см. А); после этого приведения уже можно воспользоваться предложением 1.

Пусть σ_1 — замкнутая k-мерная поверхность в \tilde{M}. Проведя через каждую точку σ_1 интегральную кривую векторного поля \tilde{v}, получим $(k + 1)$-мерную трубку траекторий Γ. Пусть σ_2 — еще одна k-мерная поверхность, лежащая на Γ и гомологическая σ_1 (т.е. цикл
\(\sigma_1 - \sigma_2 \) является границей некоторого куска \(\Gamma \). Ввиду условия (8), \((k + 1)\)-форма \(d\alpha \) равна нулю на \(\Gamma \). Следовательно, по теореме Стокса,

\[
\int_{\sigma_1} \alpha = \int_{\sigma_2} \alpha. \tag{11}
\]

Пусть теперь \(\sigma_1 \) и \(\sigma_2 \) — сечения трубки \(\Gamma \) гиперповерхностями \(t = t_1 \) и \(t = t_2 \). Тогда в равенстве (11) форму \(\alpha \) можно заменить на \(\varphi \) и мы переходим к инварианту Пуанкаре исходной системы (1).

Систематическое использование времени \(t \) как независимой координаты в расширенном фазовом пространстве — одна из основных идей книги Картана.

В. Пусть теперь \(M^{2n} = T^*N^n \) — фазовое пространство гамильтоновой системы с конфигурационным пространством \(N^n = \{x\} \). Введем канонические импульсы \(y \in T^*_x N \) и 1-форму

\[
\varphi = y \, dx = \sum_{k=1}^{n} y_k \, dx_k.
\]

Как заметил Пуанкаре [1, п. 255], уравнения Гамильтона

\[
\dot{x}_k = \frac{\partial H}{\partial y_k}, \quad \dot{y}_k = -\frac{\partial H}{\partial x_k}; \quad 1 \leq k \leq n, \tag{12}
\]

допускают линейный относительный инвариант

\[
\int y_k \, dx_k, \quad \partial \gamma = 0. \tag{13}
\]

Интересно отметить, что инвариант (13) не зависит от гамильтониана \(H \) в уравнениях (12). Поэтому (13) иногда называют универсальным интегральным инвариантом. Как доказал Ли Хуа Чжун [4], каждый линейный универсальный инвариант уравнений Гамильтона может отличаться от инварианта Пуанкаре (13) лишь постоянным множителем. Этот результат, впрочем, носит формальный характер. Его доказательство основано на анализе инвариантности интеграла от одной и той же 1-формы \(\varphi \) относительно фазовых потоков гамильтоновых систем с разными конкретными гамильтонианами.

Стоит подчеркнуть, что теорема Ли Хуа Чжуна доказана для случая, когда \(M = \mathbb{R}^{2n} \). Если первое число Бetti фазового пространства \(M \) отлично от нуля, то эта теорема уже не справедлива. К форме \(\varphi \) можно прибавить замкнутую, но не точную 1-форму. Тогда значение интеграла (13) на негомологических нулях циклов изменится на некото- рые ненулевые аддитивные постоянные. В общем случае теорема Ли Хуа Чжуна имеет место лишь для условных интегральных инвариантов.
Добавление

Пусть v — гамильтоново векторное поле, определяемое дифференциальными уравнениями (12). Нетрудно заметить, что систему (12) можно представить в эквивалентной форме

$$i_v d\varphi = -dH.$$

Согласно предложению 2, расширенная гамильтонова система допускает относительный интегральный инвариант

$$\int \varphi - H dt.$$ \hspace{1cm} (14)

Это, пожалуй, самый известный результат Картана из его книги [2]. Инвариант (14) называется интегральным инвариантом Пуанкаре — Картана, а подынтегральное выражение $\sum y dx - H dt$ — формой энергии-импульса.

Как заметил Картан ([2], п. 11), наличие интегрального инварианта (14) однозначно выделяет гамильтонову систему (12).

Г. Пуанкаре поставил задачу о наличии других интегральных инвариантов уравнений динамики, в частности, в задаче трех тел. В [1, п. 257] он пишет: «Можно задаться вопросом, существуют ли другие алгебраические интегральные инварианты, кроме тех, которые мы только что образовали.

Можно было бы применить либо метод Брунса, либо метод, который я использовал в главах IV и V...».

Пуанкаре понимал, что эта задача тесно связана с условиями интегрируемости уравнений Гамильтона. Не случайно он упоминает главу V, в которой им доказана теорема о несуществовании однозначных аналитических интегралов при типичном возмущении функции Гамильтона. Покажем, что действительно в окрестности инвариантных торов вполне интегрируемые системы допускают несколько различных относительных интегральных инвариантов. В переменных действительного угла $J, \varphi \mod 2\pi$ уравнения имеют следующий вид:

$$\dot{J}_1 = \ldots = \dot{J}_n = 0, \quad \dot{\varphi}_1 = \omega_1, \ldots, \dot{\varphi}_n = \omega_n.$$ \hspace{1cm} (15)

Здесь ω_k — функция от J. Рассмотрим невырожденный случай, когда

$$\frac{\partial(\omega_1, \ldots, \omega_n)}{\partial(J_1, \ldots, J_n)} \neq 0.$$

Оказывается, уравнения (15) можно представить в различных независимых гамильтоновых формах [5]: положим

$$\varphi = \sum_{k=1}^{n} \frac{\partial K}{\partial \omega_k} d\varphi_k,$$
а функция Гамильтона H равна

$$
\sum_{l}^{n} \omega_k \frac{\partial K}{\partial \omega_k} - K.
$$

Здесь K — невырожденная функция от частот $\omega_1, \ldots, \omega_n$:

$$
\det \left| \frac{\partial^2 K}{\partial \omega_i \partial \omega_j} \right| \neq 0.
$$

Различные гамильтоновы представления уравнений (15) «нумеруются» функциями $K(\omega)$. Поэтому, по теореме Пуанкаре, система (15) допускает интегральные инварианты

$$
\int \varphi = \int \sum_{l}^{n} \frac{\partial K}{\partial \omega_k} d\varphi_k.
$$

Сам Пуанкаре пытался связать существование новых интегральных инвариантов со свойствами мультипликаторов периодических решений уравнений Гамильтона. Он показал [1, п. 259], что если имеется p различных интегральных инвариантов (когда 1-формы φ независимы), причем коэффициенты форм φ линейны по канонически переменным (как, например, в (13)), то p мультипликаторов будут равны единице. К сожалению, для общего случая анализ задачи, проведенный Пуанкаре, не привел к законченным результатам. В связи с этим Пуанкаре говорит: «Вероятно, задача трех тел не допускает инвариантных алгебраических соотношений, отличных от тех, которые уже известны. Однако, я еще не в состоянии доказать это» [1, п. 258].

Д. Согласно Пуанкаре, уравнения Гамильтона допускают абсолютный интегральный инвариант, задаваемый 2-формой $\omega = d\varphi$. Очевидно также, что степени ω ($\omega^2 = \omega \wedge \omega, \ldots$) порождают абсолютные инварианты четных степеней. Особый интерес представляет $2n$-форма ω^n, пропорциональная форме объема в фазовом пространстве T^*N. Из ее инвариантности вытекает знаменитая теорема Лиувилля о сохранении фазового объема гамильтоновых систем, известная, конечно, до Пуанкаре и Картана.

Более общо, система (1) на M^n допускает интегральный инвариант

$$
\int_D \rho(x) d^n x
$$

(16)
тогда и только тогда, когда

$$\text{div} \, \rho v = \sum_{i=1}^{n} \frac{\partial \rho v_i}{\partial x_i} = 0. \quad (17)$$

Это уравнение называется уравнением Лиувилля, а функция ρ — плотностью интегрального инварианта. Для гамильтоновых систем $\rho \equiv 1$. Если $\rho > 0$, то интеграл (16) часто называется инвариантной мерой: его значение можно принять за меру mes области D. Таким образом,

$$\text{mes} (g^t D) = \text{mes} D,$$

где g^t — фазовый поток системы (1).

Для систем с инвариантной мерой на компактном M^n Пуанкаре доказал теорему о возвращении, которая положила начало эргодической теории: для почти всех (в смысле меры Лебега) $x \in M$ траектория $g^t x$ бесконечное число раз скользит вдоль нерегулярно сходится к начальной точке x. Приведем количественный вариант этого результата, установленный недавно Н. Г. Мошевитином.

Теорема 1. Пусть положительная функция $\psi(t)$ сколь угодно медленно возрастает $\to +\infty$ при $t \to +\infty$ и $\psi(t)/t^{1/n}$ монотонно убывает к нулю при $t \to +\infty$. Тогда для почти каждого $x \in M^n$ найдется последовательность $t_v \to +\infty$, такая, что

$$\rho (g^t_v x, x) < \frac{1}{t_v^{1/n}} \psi (t_v).$$

Здесь ρ — некоторое расстояние на M. Н. Г. Мошевитин привел пример сохраняющего объем сдвига g на n-мерном торе \mathbb{T}^n, для которого

$$\rho (g^t x, x) > Ct^{-1/n}, \quad C = \text{const}$$

при всех $t \in \mathbb{N}$ и всех $x \in \mathbb{T}^n$.

Для уравнений (15) уравнение Лиувилля принимает вид

$$\sum \omega_k \frac{\partial \rho}{\partial \varphi_k} = 0.$$

В предположении невырожденности это уравнение имеет решения, зависящие лишь от переменных действия: $\rho = \rho (J_1, \ldots, J_n).$ Оказывается, все такие инвариантные меры лиувиллевы [5]: они получаются возведением в n-ую степень дифференциала 1-формы $\varphi = \sum \partial K / \partial \omega_k d\varphi_k$ из п. Г. Если принять за переменные действие J частоты ω, то свойство лиувиллевости меры с плотностью $\rho (J)$ эквивалентно уравнению

$$\text{det} \left| \frac{\partial^2 K}{\partial J_i \partial J_j} \right| = \rho (J).$$
Это классическое уравнение Монжа — Ампера, которое, как известно, локально разрешимо относительно функции K при условии положительности функции ρ.

Е. Согласно теореме Крылова — Богословкия, любая динамическая система на компактном многообразии имеет хотя бы одну инвариантную меру (см. [7], современное изложение — в [8]). Однако, в общем случае эти меры сингулярные и никак не связаны с гладкой структурой фазового пространства: они могут быть сосредоточены на конечном числе траекторий (например, асимптотически устойчивых положений равновесия).

Укажем некоторые общие условия существования у системы (1) инвариантной меры с гладкой плотностью. Уравнение Лиувилля (17) с учетом положительности плотности ρ можно переписать в виде

$$\dot{f} = - \text{div} \, v, \quad \text{где} \quad f = \ln \rho.$$ \hspace{1cm} (18)

Ясно, что f — гладкая функция на M.

По теореме о выпрямлении траекторий (восходящей к Пуанкаре), в малой окрестности неособой точки систему (1) можно привести к следующему виду

$$\dot{z}_1 = 1, \quad \dot{z}_2 = \ldots = \dot{z}_n = 0.$$ \hspace{1cm} (19)

Следовательно, локально система (1) допускает целое семейство инвариантных мер: их плотности — произвольные функции от z_2, \ldots, z_n. Таким образом, задачу об интегральном инварианте имеет смысл рассматривать или в окрестности положений равновесия, или же в достаточно больших областях фазового пространства, где траектория обладает свойством возвращаемости (например, во всем M^n).

Теорема 2 ([9]). Пусть $t \mapsto x(t)$ — решение системы (1) с компактным замыканием его траектории. Если система (1) допускает инвариантную меру с гладкой плотностью, то существует

$$\lim_{s \to -\infty} \frac{1}{s} \int_{0}^{s} (\text{div} \, v)_{x(t)} \, dt = 0.$$ \hspace{1cm} (20)

Доказательство этого утверждения простое. Пусть $x(t) \in D$ и D — компактная подобласть M. Согласно (18)

$$\lim_{s \to -\infty} \frac{1}{s} \int_{0}^{s} (\text{div} \, v) \, dt = \lim_{s \to -\infty} \frac{f(x(0)) - f(x(s))}{s} = 0,$$

так как непрерывная функция f ограничена сверху и снизу на множестве D.

Отметим ряд следствий теоремы 1.
Следствие 1. Пусть \(x = 0 \) — равновесное решение нелинейной системы
\[
\dot{x} = \Lambda x + \ldots.
\] (21)
Если \(\text{tr} \Lambda \neq 0 \), то эта система не имеет в окрестности точки \(x = 0 \) интегрального инварианта с гладкой положительной плотностью.

Действительно, в этом случае \((\text{div} \, v)_{x=0} = \text{tr} \Lambda \). Остается воспользоваться формулой (20) для решения \(x(t) \equiv 0 \).

Интересно отметить, что условие \(\text{tr} \Lambda = 0 \) означает сохранение стандартной формы объема в \(\mathbb{R}^n \) фазовым потоком линейной системы \(\dot{x} = \Lambda x \). Таким образом, если линейная система с постоянными коэффициентами имеет хотя бы одну инвариантную меру, то она обязательно допускает стандартную инвариантную меру (с единичной плотностью). В работе [9] указаны применения следствия 1 для некоторых задач неограниченной динамики.

Предположим теперь, что система (1) на \(M^n, \, n = m + k \) имеет \(k \)-мерный инвариантный тор \(T^k \), заполненный траекториями условно периодических движений. В малой окрестности этого тора можно ввести координаты \(x_1, \ldots, x_k \mod 2\pi, \, y_1, \ldots, y_m \), в которых уравнения (1) примут вид
\[
\dot{x} = \omega + f(x, y), \quad \dot{y} = \Omega y + g(x, y).
\] (22)
Здесь \(\omega = (\omega_1, \ldots, \omega_k) \) — нерезонансный набор частот условно-периодических движений на \(T^k \), \(f(x, 0) = 0, \, g(x, y) = O(|y|^2) \). Инвариантный тор задается, очевидно, уравнением \(y = 0 \). Элементы квадратной матрицы \(\Omega \) порядка \(m \) \(2\pi \)-периодически зависят от \(x_1, \ldots, x_n \).

Следствие 2. Если система (22) допускает инвариантную меру с гладкой плотностью, то
\[
\int_0^{2\pi} \ldots \int_0^{2\pi} (\text{tr} \, \Omega) \, dx_1 \ldots dx_n = 0.
\] (23)

Действительно, согласно теореме Г. Вейля,
\[
\lim_{s \to -\infty} \frac{1}{s} \int_0^s (\text{div} \, v) \, dt = \frac{1}{(2\pi)^k} \int_{T^k} (\text{tr} \, \Omega) \, d^k x
\]
для решений \(x = \omega t + x_0, \, y = 0 \). Остается воспользоваться теоремой 2.

При \(k = 0 \) матрица \(\Omega \) имеет постоянные элементы и мы приходим к следствию 1: сумма собственных чисел матрицы \(\Lambda \) равна нулю. Согласно теореме Флока—Ляпунова, при \(k = 1 \) с помощью линейной замены координат \(y \), \(2\pi \)-периодической по \(x \), матрицу \(\Omega \) можно привести к постоянной матрице. Собственные числа матрицы \(\exp(2\pi \Omega/\omega) \)
называются мультипликаторами периодической траектории $T^1 (k = 1)$. Следствие 2 дает нам необходимое условие существования инвариантной меры в окрестности периодической траектории: произведение ее мультипликаторов равно единице.

Если матрицу Ω можно привести к постоянной, то такой инвариантный тор называется приводимым. Обсуждение задачи о приводимости торов при $k > 1$ можно найти в работах [10, 11]. Для приводимых торов условие (23) переходит в простое равенство $\text{tr} \, \Omega = 0$.

Следствие 1 допускает некоторое уточнение. Вычислим дивергенцию правой части системы (21) и разложим ее в ряд Маклорена

$$ - \text{div} \, v = \text{tr} \, \Lambda + (a, x) + \ldots $$

Здесь a — некоторый постоянный вектор из \mathbb{R}^n.

Предложение 3 ([9]). Пусть $X = \Lambda^T$, $Y = \|X, a\|$. Если $\text{rank} \, X < \text{rank} \, Y$, то система (21) не имеет инвариантной меры в окрестности точки $x = 0$.

Если матрица Λ невырождена, то ранги матриц X и Y заведомо совпадают.

В приложениях встречаются системы с однородными правыми частями: $v(\lambda x) = \lambda^k v(x)$ с некоторым целым $k \geq 1$. Для таких систем критерий существования инвариантной меры с гладкой плотностью дает

Предложение 4 ([12]). Система дифференциальных уравнений с однородными правыми частями имеет инвариантную меру в том и только том случае, когда ее фазовый поток сохраняет стандартную меру. При этом плотность инвариантной меры является ее первым интегралом.

Укажем любопытное применение этого утверждения к уравнениям Эйлера — Пуанкаре на алгебрах Ли, которые описывают геодезические линии на группах Ли с левоинвариантной метрикой (или, что то же самое, движение по инерции механической системы, кинетическая энергия которой инвариантна при левых сдвигах на группе Ли — конфигурационном пространстве системы). Уравнения Эйлера — Пуанкаре, как известно [13], имеют следующий вид:

$$ \dot{m}_i = \sum c^i_{ik} m_k \omega_k, \quad m = \sum I_{sp} \omega_p. $$

Здесь c^i_{ik} — структурные постоянные алгебры Ли g, ω (скорость системы) — вектор из g, а m (кинетический момент) — вектор из двойственного пространства g^*, $I = \|I_{sp}\|$ — тензор инерции системы. Пусть g — алгебра Ли группы G — конфигурационного пространства рассматриваемой системы.
Теорема 3 ([12]). Уравнения Эйлера — Пуанкаре имеют инвариантную меру с гладкой плотностью тогда и только тогда, когда группа \(G \) унимодулярна.

Напомним, что унимодулярность группы означает наличие меры \(\text{Haara} \), которая не меняется при левых и правых сдвигах группы \(G \). Аналитический критерий унимодулярности имеет следующий вид: для каждого \(i \) выполнено равенство \(\sum c_{ik}^k = 0 \), где \(c \) — структурные постоянные алгебры Ли группы \(G \).

В работе [12] указаны условия наличия инвариантной меры в более общем случае, когда на систему наложены левоинварианты неголономные связи. Инвариантные меры систем с правоинвариантными связями изучены в [14].

Ж. Задача об инвариантных мерах возмущенных уравнений (15) рассмотрена в работе [9] (даже в более общей ситуации, когда количество медленных и быстрых переменных не совпадает). Ограничиваем рассмотрением простейшего из нетривиальных случаев, когда имеется одна медленная \(z \) и две быстрых угловых переменных \(x \) и \(y \). Уравнения будут иметь следующий вид:

\[
\dot{x} = u_0 + \varepsilon u_1 + \ldots, \quad \dot{y} = v_0 + \varepsilon v_1 + \ldots, \quad \dot{z} = \varepsilon w_1 + \ldots \tag{24}
\]

Здесь \(\varepsilon \) — малый параметр \(u_0 \) и \(v_0 \) зависят только от \(z \). Правые части этих уравнений — ряды по \(\varepsilon \), коэффициенты которых — аналитические функции по \(x, y, z, 2\pi \)-периодические по \(x \) и \(y \). Можно считать, что коэффициенты определены и аналитичны в прямом произведении \(\Delta \times \mathbb{T}^2 \), где \(\Delta \) — интервал в \(\mathbb{R} = \{ z \} \), а \(\mathbb{T}^2 = \{ x, y \mod 2\pi \} \).

Будем искать решение уравнения (18) в виде ряда по степеням \(\varepsilon \)

\[
f = f_0 + \varepsilon f_1 + \ldots
\]

с аналитическими в \(\Delta \times \mathbb{T}^2 \) коэффициентами. Приравнивая в уравнении (18) коэффициенты при одинаковых степенях \(\varepsilon \), получим следующую цепочку уравнений:

\[
\frac{\partial f_0}{\partial x} u_0 + \frac{\partial f_0}{\partial y} v_0 = 0,
\]

\[
\frac{\partial f_0}{\partial x} u_1 + \frac{\partial f_0}{\partial y} v_1 + \frac{\partial f_0}{\partial z} w_1 + \frac{\partial f_1}{\partial x} u_0 + \frac{\partial f_1}{\partial y} v_0 = - \left(\frac{\partial u_1}{\partial x} + \frac{\partial v_1}{\partial y} + \frac{\partial w_1}{\partial z} \right). \tag{25}
\]

При \(\varepsilon = 0 \) система (24) будет вполне интегрируемой: фазовое пространство \(\Delta \times \mathbb{T}^2 \) расслоено на инвариантные торы \(z = \text{const} \).
условно-периодическими движениями. Невозмущенную систему будем называть ненесложенной, если отношение частот \(u_0/v_0 \) — непостоянная функция от \(z \); другими словами, \(u_0/v_0 - u_0 v_0' \neq 0 \) на интервале \(\Delta \).

Для ненесложенных систем из первого уравнения (25) вытекает, что \(f_0 \) — функция только от переменной \(z \). Пусть черта обозначает усреднение по переменным \(x, y \):

\[
\bar{F} = \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} F(x, y, z) \, dx \, dy.
\]

Применяя операцию усреднения ко второму уравнению системы (25), получим

\[
\frac{df_0}{dz} \bar{w}_1 = - \frac{d\bar{w}_1}{dz}.
\]

Это соотношение приводит нас к принципу усреднения, установленному в [9]: функция \(\bar{f}_0 \) является плотностью интегрального инварианта усредненной системы

\[
\bar{z} = \varepsilon \bar{w}_1.
\] (26)

Переход от полной системы (24) к усредненной (26) является стандартным приемом теории возмущений. Отметим одно из следствий принципа усреднения: если функция \(\bar{w}_1 \) имеет изолированный нуль, то полная система (24) не допускает инвариантной меры с плотностью \(\rho = \exp f \), где \(f \) задана в виде ряда (25).

Положим

\[
w_1 = \sum W_{mn}(z) \exp [i(mx + ny)]
\]

\[
\frac{\partial u_1}{\partial x} + \frac{\partial v_1}{\partial y} + \frac{\partial w_1}{\partial z} = - \sum G_{mn}(z) \exp [i(mx + ny)]
\]

\[
f_1 = \sum F_{mn}(z) \exp [i(mx + ny)].
\]

Приравнивая во втором уравнении (25) коэффициенты при одинаковых гармониках, приходим к серии равенств

\[
f_0 W_{mn} + i(mu_0 + nv_0) F_{mn} = G_{mn}.
\] (27)

Предположим, что при \(z = z_0 \) выполнено нетривиальное резонансное соотношение \(mu_0 + nv_0 = 0 \) с некоторыми целыми \(m, n \). Если \(W_{mn}(z_0) = 0 \), а \(G_{mn}(z_0) \neq 0 \), то уравнение (27) противоречиво и исходная система (24) не допускает меры с однозначной плотностью, аналитической по параметру \(\varepsilon \).

Пусть \(W_{mn}(z_0) \neq 0 \). Заметим, что при \(z = z_0 \), очевидно, будут справедливы соотношения

\[
f_0' W_{km, kn} = G_{km, kn}, \quad k \in \mathbb{Z}.
\]
Если хотя бы при одном целом k

$$W_{m,n}G_{kn,km} \neq W_{km,kn}G_{m,n},$$

то система (24) также не имеет инвариантных мер с однозначными и аналитическими плотностями.

Этот метод применен в работе [9] для изучения условий существования инвариантных мер уравнений неголономной механики. Более точно, рассматривается механическая система с конфигурационным пространством в виде трехмерного тора $T^3 = \{\varphi_1, \varphi_2, \varphi_3 \bmod 2\pi\}$, лагранжианом $L = (\dot{\varphi}_1^2 + \dot{\varphi}_2^2 + \dot{\varphi}_3^2)/2$ (внешние силы отсутствуют) и связью

$$\dot{\varphi}_3 = \varepsilon(a_1 \dot{\varphi}_1 + a_2 \dot{\varphi}_2). \quad (28)$$

Здесь ε — малый параметр. При $\varepsilon = 0$ связь (28) будет интегрируемой и мы имеем обычную голономную систему, обладающую инвариантной мерой (согласно классической теореме Лиувилля). В общем случае (когда $\varepsilon \neq 0$) связь (28) будет, конечно, неинтегрируемой. Системы со связями вида (28) Я. В. Татаринов предложил назвать слабо неголономными.

С точностью до членов $o(\varepsilon)$ уравнения движения имеют следующий вид:

$$\dot{\varphi}_1 = J_1, \quad \dot{\varphi}_2 = J_2, \quad \dot{\varphi}_3 = \varepsilon(a_1 J_1 + a_2 J_2), \quad \dot{J}_1 = \dot{J}_2 = 0.$$

Медленными переменными будут частоты J_1 и J_2, а также угловая координата φ_3. Здесь невозмущенная система оказывается вырожденной, однако к ней можно применить указанный выше метод поиска плотности инвариантной меры в виде ряда по степеням ε.

Результаты анализа этой задачи можно сформулировать в следующей геометрической форме. Множество всех систем с лагранжианом L и связью (28) имеет естественную структуру бесконечномерного линейного пространства (изоморфного пространству пар функций a_1 и a_2 на трехмерном торе). Обозначим это пространство K. Все системы, обладающие инвариантной мерой (в первом приближении по ε), образуют линейное подпространство $K' \subset K$. Точно также, системы с интегрируемой связью (28) образуют линейное подпространство K''. Действительно, условия интегрируемости соотношения (28) в первом приближении по ε имеет вид

$$\frac{\partial a_1}{\partial \varphi_2} = \frac{\partial a_2}{\partial \varphi_1}.$$

Оно линейно по a_1 и a_2. По теореме Лиувилля, $K'' \subset K'$. Оказывается,

$$\dim K/K' = \infty, \quad \dim K'/K'' = \infty.$$
Первое соотношение показывает, что наличие инвариантной меры с гладкой плотностью является редким исключением среди неголономных систем. Второе соотношение указывает на существование массивного множества неголономных систем с инвариантной мерой, не сводящихся к голономным системам. Среди них имеются, в частности, системы Чаплыгина (для которых функции a_1 и a_2 не зависят от φ_3), которые в первом приближении по ε удовлетворяют всем условиям применимости метода приводящего множителя, гарантирующего существоование интегрального инварианта (см. [15]). Было бы интересным выяснить, справедливы ли эти заключения при малых фиксированных значениях $\varepsilon \neq 0$ (а не только в первом приближении по параметру ε).

З. Идея Пуанкаре о связи задачи о линейных интегральных инвариантах с проблемой малых знаменателей [1, п. 257] реализована в работе [16]. В ней рассмотрена система уравнений (24) с малым параметром ε, которая часто встречается в теории нелинейных колебаний.

В [16] рассмотрена задача об условиях существования у системы (24) относительно интегрального инварианта

$$\int \varphi_\varepsilon,$$

(29)

причем коэффициенты 1-формы φ_ε — однозначные аналитические функции на $\Delta \times T^2$, аналитически зависящие от ε. Конечно, следует исключить тривиальный случай, когда

$$d\varphi_\varepsilon = 0.$$

(30)

При этом условии интеграл (29) тождественно равен нулю в силу теоремы Стокса.

Разложим функцию w_1 в двойной ряд Фурье:

$$w_1 = \sum W_{mn}(z) \exp [i(mx + ny)].$$

Введем множество $\mathcal{P} \subset \Delta$, состоящее из точек z, таких, что

1) $\mu w_0(z) + \nu v_0(z) = 0$ для некоторых целых m, n, не равных одновременно нулю,

2) $W_{mn}(z) \neq 0$.

Такие множества впервые рассматривались Пуанкаре в связи с проблемой интегрируемости уравнений Гамильтона [1, гл. V].

Теорема 4 ([16]). Предположим, что

(A) множество \mathcal{P} имеет предельную точку z_*, внутри Δ,

(B) $u'_0 v_0 - u_0 v'_0 |_{z_*} \neq 0$,

(C) $W_{00}(z) \neq 0$.

Тогда система (24) не имеет нетривиальных интегральных инвариантов вида (29).
Условие (B) означает невырожденность невозмущенной системы (когда \(\varepsilon = 0 \)): отношение частот \(u_0/v_0 \) непостоянно. Кроме того, из (B) вытекает, что при \(z = z_* \) и \(\varepsilon = 0 \) правые части (24) не обращаются в нуль. Условия (A)+(B) гарантируют отсутствие непостоянных аналитических интегралов и нетривиальных полей симметрий, аналитических по \(\varepsilon \) [16].

Можно попытаться применить теорему 4 к гамильтоновым системам, мало отличающимися от вполне интегрируемых. Здесь речь может идти о системах с двумя степенями свободы, порядок которых понижен на единицу с помощью интеграла энергии. Применя метод Уитткера, приведенной системе можно придать вид неавтономной гамильтоновой системы с периодическим по времени гамильтонианом (см. [17, гл. 1]).

Итак, рассмотрим уравнение Гамильтона

\[
\dot{x} = 1, \quad \dot{y} = \frac{\partial H}{\partial z}, \quad \dot{z} = -\frac{\partial H}{\partial y},
\]

\[H_\varepsilon = H_0(z) + \varepsilon H_1(x, y, z) + \ldots \]

Здесь \(y \mod 2\pi \), \(z \) — канонические переменные действие-угол невозмущенной системы, функция \(H \) считается 2\(\pi \)-периодической по «времени» \(x = t \).

Для системы (31) имеем:

\[
u_0 = 1, \quad v_0 = \frac{\partial H_0}{\partial z}, \quad w_1 = -\frac{\partial H_1}{\partial y}.\]

Следовательно, условие (B) эквивалентно невырожденности невозмущенного гамильтониана:

\[
\frac{d^2 H_0}{dz^2} \neq 0.
\]

Множество \(\mathcal{P} \), очевидно, совпадает с множеством

\[
\left\{ z \in \Delta : \frac{dH_0}{dz} = -\frac{n}{m}, \ H_{mn} \neq 0 \right\},
\]

где \(H_{mn} \) — коэффициенты Фурье возмущающей функции \(H_1 \). Из (32) вытекает, что условие (C) для гамильтоновых систем никогда не выполняется \((W_{00} \equiv 0) \). Впрочем, это не удивительно: уравнения (31) имеют интегральный инвариант Пуанкаре — Кардана

\[
\int z \, dy - H_\varepsilon \, dx.
\]

Очевидно, этот инвариант нетривиальный (условие вырождения (30) не выполняется).

Укажем достаточные условия несуществования второго интегрального инварианта. Для этого нам потребуется
Лемма 1 ([16]). Пусть выполнены условия (A) и (B) теоремы 1. Тогда найдется функция
\[\lambda_\varepsilon = \lambda_0(z) + \varepsilon \lambda_1(z) + \ldots, \]
tакая, что
\[d\varphi_\varepsilon = i_v(\lambda_\varepsilon \Omega), \tag{36} \]
где \(v_\varepsilon \) — векторное поле (24), \(\Omega = dx \land dy \land dz \).

Покажем, как отсюда выводится заключение теоремы 4. Проинтегрируем 2-формы в обеих частях (36) по двумерному тору \(z = \text{const} \). По теореме Стокса интеграл от формы \(d\varphi \) равен нулю, а интеграл справа равен
\[\lambda_\varepsilon W_{00} + o(\varepsilon). \]
Применяя условия (C), получаем, что \(\lambda_\varepsilon = 0 \). Поэтому равенство (36) будет совпадать с условием выражения (30).

Лемма 2. Если выполнено (36), то 3-форма \(\lambda \Omega \) порождает абсолютный интегральный инвариант системы (24).

Действительно,
\[0 = dd\varphi = di_v(\lambda \Omega) = di_v(\lambda \Omega) + i_v d(\lambda \Omega) = L_v(\lambda \Omega). \]

Лемма 3. Предположим, что система (24) имеет еще один абсолютный инвариант, порождаемый 3-формой \(\lambda' \Omega \), причем \(\lambda' \neq 0 \). Тогда отношение \(\lambda / \lambda' \) интеграл уравнений (24).

Этот простой факт (правда, в других терминах) был отмечен Якоби в его «Лекциях по динамике».

Хорошо известно, что фазовый поток уравнений Гамильтона (31) сохраняет «стандартную» 3-форму объема \(\Omega \). Более того, для 1-формы «энергии-импульса» из (35) справедливо равенство (36), причем \(\lambda_\varepsilon = 1 \).

Теорема 5 ([6]). Пусть выполнено условие (33), а множество (34) имеет предельную точку внутри интервала \(\Delta \). Тогда любой условный интегральный инвариант (29) гамильтоновой системы (31) отличается от инварианта Пуанкаре — Картана (35) постоянным множителем \(c_\varepsilon \).

Доказательство. Предположим, что имеется интегральный инвариант вида (29) системы (31). Так как выполнены условия (A) и (B) теоремы 4, то справедливо равенство (36). Учтем теперь, что \(L_0 \Omega = 0 \). Тогда, по леммам 2 и 3, множитель \(\lambda_\varepsilon \) в (36) — интеграл системы (31). Однако, при условиях теоремы 5, \(\lambda_\varepsilon = c_\varepsilon = \text{const} \) [17, гл. 1]. Итак,
\[d\varphi_\varepsilon = c_\varepsilon d(z dy - H_\varepsilon dx). \]
Отсюда вытекает, что значения интегралов (29) и (35) на гомологических нуля циклах отличаются множителем c_ϵ. Что и требовалось.

Замечание. Предположим, что
1) $u_0'v_0 - u_0v_0' \neq 0$,
2) P всюду плотно в Δ,
3) система (24) допускает нетривиальный инвариант (29). Можно показать, что тогда любой другой условный интегральный инвариант системы (24) отличается от (29) постоянным множителем, аналитически зависящим от ϵ.

Теорему 5 можно применить к плоской круговой ограниченной задаче трех тел. Малым параметром ϵ здесь служит отношение массы Юпитера к массе Солнца. Динамика третьего тела ничтожно малой массы (астероида) во вращающейся системе отсчета (где Солнце и Юпитер неподвижны) описывается уравнениями Гамильтона [18]

$$
\dot{q}_k = \frac{\partial H}{\partial p_k}, \quad \dot{p}_k = -\frac{\partial H}{\partial q_k}; \quad k = 1, 2,
$$

$$
H = H_0 + \epsilon H_1 + \ldots, \quad H_0 = -\frac{1}{2p_1^2} - p_2.
$$

(37)

Разложение возмущающей функции в двойной ряд Фурье было найдено Леверье. Оно имеет следующий вид:

$$
H_1 = \sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} h_{uv} \cos [uq_1 - v(q_1 + q_2)].
$$

Коэффициенты h_{uv}, зависящие от p_1, p_2, вообще говоря, отличны от нуля. Принимая угловую переменную q_2 за новое «время» и применяв процедуру понижения порядка Уиттекера, приходим к уравнениям Гамильтона вида (31). При этом

$$
H_0(z) = -\frac{1}{z_2}.
$$

Так что условие (33) выполнено автоматически. Можно показать, что множество P заведомо всюду плотно на полуоси $z > 0$. Таким образом, приведенные уравнения Гамильтона ограниченной задачи трех тел не имеют новых относительных интегральных инвариантов, аналитических по параметру ϵ и независимых от инварианта Пуанкаре — Картана.

И. Теорема 4 применена в работе [16] для выяснения причины отсутствия линейных условных интегральных инвариантов для течений вязкой несжимаемой жидкости. Как известно, в невязком случае сохраняется циркуляция жидкости по подвижному контуру. Это —
знаменитая теорема Гельмгольца — Томсона, которая с разных точек зрения обсуждалась Картаном в его книге.

Течение однородной жидкости (плотность ρ постоянна) в потенциальном силовом поле описывается уравнением Навье — Стокса

$$\frac{dv}{dt} = -\text{grad} \left(\frac{p}{\rho} + V \right) + \nu \Delta v.$$ \hspace{1cm} (38)

Здесь v — поле скоростей, p — давление, V — потенциальная энергия поля сил, ν — коэффициент вязкости. Для простоты мы будем писать p вместо $p/\rho + V$. В силу предположения об однородности, уравнение неразрывности сводится к условию несжимаемости

$$\text{div} \, v = 0.$$ \hspace{1cm} (39)

Мы будем рассматривать стационарные течения, когда поле скоростей v и функция p не зависят явно от времени. В этом случае поле v порождает бездивергентную динамическую систему

$$\dot{x} = v(x),$$ \hspace{1cm} (40)

фазовый поток которой сохраняет стандартный объем в $\mathbb{R}^3 = \{x\}$.

Пусть u, v, w — компоненты векторного поля v. Нетрудно понять, что уравнения (38)–(39) допускают следующие частные решения:

$$u_0 = \alpha z + \xi, \quad v_0 = \beta z + \eta, \quad w_0 = 0, \quad p = p_0,$$

$$\alpha, \beta, \xi, \eta, p_0 = \text{const}.$$ \hspace{1cm} (41)

Решение (41) соответствует сдвиговому плоско-параллельному течению.

Будем искать стационарные решения системы уравнений (38)–(39) в виде степенных рядов

$$u = u_0 + \varepsilon u_1 + \ldots, \quad v = v_0 + \varepsilon v_1 + \ldots, \quad w = \varepsilon w_1 + \ldots, \quad p = p_0 + \varepsilon p_1 + \ldots$$ \hspace{1cm} (42)

Здесь ε — малый параметр, а коэффициенты — аналитические функции от x, y, z, 2π-периодические по x, y. Подставляя ряды (42) в (38)–(39) и приравнивая коэффициенты при ε, мы получаем следующую линейную систему:

$$u_0 \frac{\partial u_1}{\partial x} + v_0 \frac{\partial u_1}{\partial y} + w_1 \alpha + \frac{\partial p_1}{\partial x} = \nu \Delta u_1,$$

$$u_0 \frac{\partial v_1}{\partial x} + v_0 \frac{\partial v_1}{\partial y} + w_1 \beta + \frac{\partial p_1}{\partial y} = \nu \Delta v_1,$$

$$u_0 \frac{\partial w_1}{\partial x} + v_0 \frac{\partial w_1}{\partial y} + \frac{\partial p_1}{\partial z} = \nu \Delta w_1,$$

$$\frac{\partial u_1}{\partial x} + \frac{\partial v_1}{\partial y} + \frac{\partial w_1}{\partial z} = 0.$$ \hspace{1cm} (43)
Добавление

Будем решать эту систему методом Фурье. Обозначая коэффициенты Фурье функций u_1, v_1, w_1, p_1 через $U_{mn}, V_{mn}, W_{mn}, P_{mn}$ соответственно, получим линейные уравнения

$$i\left[m(\alpha z + \xi) + n(\beta z + \eta)\right] U_{mn} + \alpha W_{mn} + imP_{mn} =$$
$$= \nu\left[-(m^2 + n^2) U_{mn} + U''_{mn}\right],$$
$$i\left[m(\alpha z + \xi) + n(\beta z + \eta)\right] V_{mn} + \beta W_{mn} + inP_{mn} =$$
$$= \nu\left[-(m^2 + n^2) V_{mn} + V''_{mn}\right],$$
$$i\left[m(\alpha z + \xi) + n(\beta z + \eta)\right] W_{mn} + P'_{mn} =$$
$$= \nu\left[-(m^2 + n^2) W_{mn} + W''_{mn}\right],$$
$$i(m U_{mn} + n V_{mn}) + W'_{mn} = 0.$$

Если $\nu \neq 0$, то уравнения (44) образуют систему обыкновенных дифференциальных уравнений, которая имеет второй порядок относительно U_{mn}, V_{mn} и первый относительно W_{mn} и P_{mn}. Следовательно, для однозначного определения этих коэффициентов мы должны задать их значения и значения производных U'_{mn}, V'_{mn} в некоторой точке $z = z_0$.

Коэффициенты Фурье функций u_k, v_k, w_k и p_k ($k \geq 2$) можно найти по индукции. Вопрос о сходимости рядов (42) является содержательной проблемой, которая, однако, решается положительно для так называемых ползучих течений (или течений Стокса), когда в уравнениях (38) пренебрегают производной $\dot{\psi}$ [16].

Принимая во внимание разложения (42), мы видим, что система (40) имеет как раз вид (24) и поэтому к ней можно попробовать применить теорему 4. Прежде всего проверим условие (A). Ясно, что

$$mu_0 + nv_0 = (m\alpha + n\beta) z + m\xi + n\eta \equiv 0$$

только если одновременно

$$m\alpha + n\beta = 0, \quad m\xi + n\eta = 0.$$

Поскольку $m^2 + n^2 \neq 0$, то $\alpha\eta - \beta\xi = 0$. Поэтому, если

$$\alpha\eta - \beta\xi \neq 0,$$

то невозмущенная система невырождена.

Обсудим теперь условие (В). Ясно, что $mu_0 + nv_0 = 0$ в точке

$$z_{mn} = -\frac{m\xi + n\eta}{m\alpha + n\beta}.$$

(45)

Конечно, мы можем исключить из рассмотрения пары целых чисел m, n, удовлетворяющих условию $m\alpha + n\beta = 0$. Напомним, что множество \mathbb{P} состоит из точек z_{mn}, в которых $W_{mn} \neq 0$. Если $\nu \neq 0$, то
коэффициенты W_{mn} в этих точках могут быть выбраны произвольными. Значит, в общем случае множество \mathbb{P} всюду плотно на оси $\mathbb{R} = \{z\}$. Более точно, это условие может нарушаться на подпространстве бесконечной коразмерности в пространстве всех векторных полей (42). Согласно теореме 4, типичное стационарное течение вида (42) не допускает нетривиальных интегралов, полей симметрий и линейных интегральных инвариантов.

С этой точки зрения интересно рассмотреть случай идеальной жидкости, когда $\nu = 0$. Здесь происходит вырождение системы (44): первое и второе дифференциальные уравнения становятся алгебраическими. В точках z_{mn} они принимают следующий вид:

$$a W_{mn} + im P_{mn} = 0, \quad \beta W_{mn} + in P_{mn} = 0.$$

Следовательно, если $\alpha n - \beta m \neq 0$, то $W_{mn}(z_{mn}) = 0$ и, следовательно, $z_{mn} \notin \mathbb{P}$. Поскольку $\alpha^2 + \beta^2 \neq 0$, то мы видим, что в случае $\alpha n - \beta m = 0$ все точки (45) совпадают. Таким образом, множество \mathbb{P} состоит не более, чем из одной точки, и, следовательно, для идеальной жидкости условие (B) не выполняется.

К. Идеи Картана о связи интегральных инвариантов с симметриями дифференциальных уравнений развиты в работе [6]. Вернемся вновь к системе (1) и будем считать, что M — трехмерное многообразие, v — гладкое касательное векторное поле без особых точек. Более того, предположим, что система (1) допускает инвариантную форму объема Ω:

$$L_v \Omega = 0.$$

Форма объема задает каноническую ориентацию M. Если M компактно, то можно считать, что

$$\int_M \Omega > 0.$$

В частности, форма Ω определяет гладкую инвариантную меру системы (1).

Наиболее важный пример систем указанного вида дают гамильтоновы системы с двумя степенями свободы. Здесь M^3 — связная компонента неосоей поверхности уровня функции Гамильтона, v — ограничение гамильтонова поля на M, форма объема определяется инвариантной 4-формой Лиувилля (подробности см., например, в [19]).

Лемма 4. (Картан [2, п. 91]) При выполнении предположений 2-форма

$$\Phi = i_v \Omega$$

замкнута и порождает абсолютный интегральный инвариант системы (1).
Действительно,
\[d\Phi = d_i \Omega = L_\nu \Omega - i_\nu d\Omega = 0, \]
\[L_\nu \Phi = L_\nu i_\nu \Omega = i_\nu L_\nu \Omega = 0. \]
Так как форма (46) замкнута, то локально
\[\Phi = d\varphi. \]
Поскольку \(i_\nu \Phi = 0, \) то
\[L_\nu \varphi = i_\nu d\varphi + di_\nu \varphi = d(i_\nu \varphi). \]
Следовательно, 1-форме \(\varphi \) отвечает «локальный» относительный интегральный инвариант.

Если класс когомологий 2-формы \(\Phi \) равен нулю, то 1-форма \(\varphi \) корректно определена в целом. В частности, это заведомо так, если
\[H^2(M, \mathbb{R}) = 0. \] (47)

Эти рассуждения фактически содержатся в [2, п. 91]. Правда, там обсуждается случай, когда \(M = \mathbb{R}^3 \).

В дальнейшем всюду предполагается, что для многообразия \(M^3 \) справедлива теорема о разбиении единицы. В частности, сюда относятся компактные многообразия.

Лемма 5. Пусть \(\Psi \) — гладкая 2-форма на \(M \). Найдется векторное поле \(x \mapsto u(x) \) такое, что
\[\Psi = i_u \Omega. \] (48)

Действительно, пусть \{\(\lambda_\alpha(x) \)\} — разбиение единицы, подчиненное некоторому открытому покрытию \(M \). Считается, что в областях \(\lambda_\alpha \) можно ввести координаты «в целом». Легко проверить, что в области \(\text{supp} \lambda_\alpha \) для 2-формы \(\lambda_\alpha \Psi \) алгебраическое уравнение (48) имеет единственное гладкое решение \(u_\alpha \) такое, что
\[\text{supp} u_\alpha \subset \text{supp} \lambda_\alpha. \]

Остаётся положить
\[u(x) = \sum \alpha u_\alpha(x). \]

Замечание. В аналитическом случае поле \(u \), конечно, будет аналитическим.

Лемма 6. Предположим, что система (1) имеет условный интегральный инвариант
\[\oint \varphi. \]
Положим
\[d\varphi = i_u \Omega. \] (49)
Тогда векторное поле \(u \) является полем симметрий: \([u, v] = 0\).
Доказательство. По определению условного инварианта

\[L_v \phi = \psi, \quad d\psi = 0. \]

Следовательно,

\[0 = dL_v \phi = L_v d\phi = L_v i_u \Omega = (L_v i_u - i_u L_v) \Omega = i_{[v,u]} \Omega. \]

Так как форма объема невырождена, то поля \(u \), \(v \) коммутируют. Что и требовалось.

Замечание. Лемма 6 остается справедливой, если в (49) заменить форму \(d\phi \) любой замкнутой 2-формой. Условия существования нетривиальных полей симметрий (когда векторы \(u(x) \) и \(v(x) \) независимы почти всюду) уравнений Гамильтона получены в [20].

Лемма 6 имеет важные приложения к гамильтоновой механике. В качестве примера рассмотрим геодезический поток на замкнутой двумерной поверхности \(\Sigma \). Он определяется заданием римановой метрики. Уравнения геодезических на \(\Sigma \) описываются уравнениями Гамильтона, причем гамильтонианом \(H \) служит риманова метрика, представленная в канонических координатах на \(T^* \Sigma \). Хорошо известно, что при положительных значениях полной энергии \(h \) гамильтоновы системы на трехмерных энергетических поверхностях

\[\{ x \in T^* \Sigma : H(x) = h \} \]

изоморфны. Обычно полагают \(h = 1 \); соответствующая динамическая система называется геодезическим потоком на \(\Sigma \). Ясно, что геодезический поток имеет относительный интегральный инвариант Пуанкаре — Картана.

Теорема 6 ([6]). Пусть \(\Sigma \) — аналитическая поверхность рода >1 с аналитической римановой метрикой. Любой условный инвариант геодезического потока на \(\Sigma \), определяемый аналитической 1-формой на (50), пропорционален инварианту Пуанкаре-Картана.

Доказательство. Пусть \(\Omega \) — инвариантная аналитическая 3-форма объема на (50). Если геодезический поток имеет условный интегральный инвариант, определяемый аналитической 1-формой \(\phi \), то (по лемме 6) найдется аналитическое поле симметрий \(u \). Однако, геодезический поток на аналитической поверхности не имеет нетривиальных симметрий [21]:

\[u = c v, \quad c = \text{const}. \]

Но тогда, согласно (49),

\[d\phi = c i_v \Omega. \]

Следовательно, рассматриваемый условный интегральный инвариант отличается от инварианта Пуанкаре — Картана постоянным множителем \(c \).
Теорема доказана.

В заключении этого пункта укажем еще на одно приложение полученных результатов к одному из ограниченных вариантов задачи трех тел. Пусть два массивных тела одинаковой массы обращаются вокруг их общего центра масс по эллиптическим орбитам с ненулевым эксцентриситетом, а третье тело ничтожно малой массы все время движется по прямой, ортогональной плоскости массивных тел (подробности см. в [22]). Эта задача предложена А. Н. Колмогоровым для проверки возможности комбинаций финальных движений трех тел по классификации Шази.

Динамика пылинки описывается неавтономной гамильтоновой системой вида (32) с периодическим гамильтонианом. Расширенное фазовое пространство совпадает с прямым произведением

$$T \times \mathbb{R}^2 = \{x \mod 2\pi, y, z\}.$$

Разумеется, эта система имеет инвариант Пуанкаре — Картана (35).

Задача А. Н. Колмогорова неинтегрируема: она не допускает несамостоятельных аналитических интегралов [22]. Причина заключается в квазислучайном характере поведения ее траекторий. В частности, имеется бесконечное число невырожденных долгопериодических траекторий. Как показано в [20], отсюда вытекает отсутствие нетривиальных аналитических полей симметрий: $u = c v$, $c = \text{const}$. Применяя лемму 6, получаем, что уравнения рассматриваемой задачи не допускают новых условных интегральных инвариантов. Аналогично доказывается отсутствие новых аналитических инвариантов на фиксированных энергетических многообразиях с большой отрицательной энергией плоской круговой ограниченной задачи трех тел. Необходимые подготовительные результаты о структуре множества долгопериодических невырожденных траекторий установлены в [23] методами символической динамики.

Эти результаты, полученные в работе [6], доказывают гипотезу Пуанкаре об отсутствии новых интегральных инвариантов для различных вариантов ограниченной задачи трех тел.

Л. Теми же методами можно изучить вопрос об условиях инвариантов второго порядка:

$$\int_D \Phi.$$

Здесь D — двумерный цикл в M^3, Φ — 2-форма. Условия инвариантности интеграла (51) имеет вид

$$L_\nu \Phi = \Psi, \quad d\Psi = 0.$$
Добавление

Для относительных инвариантов 2-форма Ψ точна, а для абсолютных инвариантов Ψ = 0.

Так как инвариантная 3-форма объема Ω невырождена, то

\[dΦ = fΩ, \quad f : M^3 \to \mathbb{R} \quad (53) \]

Лемма 7. Функция \(f \) — интеграл системы (1) на \(M^3 \).

Действительно, применяя (52) и (53), получим:

\[
0 = dΨ - dL_vΦ = L_vdΦ = L_v(fΩ)
\]

\[
= (L_vf)Ω + fL_vΩ = \dot{f}Ω.
\]

Следовательно, \(\dot{f} = 0 \). Что и требовалось.

По лемме 4 система (1) имеет абсолютный инвариант \(i_vΩ \). Так что речь может идти о существовании еще одного интегрального инварианта.

Для дальнейшего полезно ввести понятие многозначного интеграла системы (1). Это замкнутая 1-форма \(θ \), такая, что

\[i_vθ = 0. \quad (54) \]

Локально \(θ = dg \), причем

\[\dot{g} = i_vdg = 0 \]

согласно (54). Таким образом, локально функция \(g \) является обычным интегралом системы (1). Если

\[H^1(M, \mathbb{R}) = 0, \quad (55) \]

то функция \(g \) определена в целом и многозначный интеграл превращается в обычный интеграл системы (1). Так как \(\dim M = 3 \), то по теореме двойственности Пуанкаре условия (47) и (55) эквивалентны.

Всюду ниже рассматриваемые объекты \((M, v, Ω, Φ) \) считаются аналитическими.

Теорема 7 ([6]). Пусть \(M^3 \) компактно и система (1) допускает условный интегральный инвариант (51), причем

\[Φ \neq ci_vΩ, \quad c = \text{const}. \quad (56) \]

Тогда система (1) имеет нетривиальный многозначный интеграл \(θ \neq 0 \).

Доказательство. По лемме 7, функция \(f \) из равенства (53) — интеграл системы (1). Если \(f \neq \text{const} \), то теорема 7 доказана. Пусть \(f = α = \text{const} \). Интегрируя обе части равенства

\[dΦ = αΩ \quad (57) \]
ДОБАВЛЕНИЕ

по компактному многообразию M и применяя теорему Стокса, получаем

$$
\alpha \int_M \Omega = 0.
$$

Так как 3-форма Ω есть форма объема, то $\alpha = 0$. Следовательно, согласно (56), форма Φ замкнута.

Положим (лемма 5)

$$
\Phi = i_u \Omega.
$$

Так как 2-форма Φ замкнута, то по лемме 6, поле u коммутирует с полем v. Возможны два случая: 1) векторы $u(x)$ и $v(x)$ линейно зависимы во всех точках $x \in M$, 2) эти векторы почти всюду независимы. Так как $v \neq 0$, то в первом случае

$$
u(x) = \lambda(x) v(x), \quad \lambda : M \to \mathbb{R}.$$

Поскольку u — поле симметрий, то λ — интеграл системы (1) [20]. Если $\lambda \neq \text{const}$, то теорема доказана. Случай $\lambda = \text{const}$ невозможен ввиду условия (56). Во втором случае, как доказано в [24], наличие нетривиального аналитического поля симметрий влечет существование аналитического многозначного интеграла $\vartheta \neq 0$. При этом используется трехмерность фазового пространства M и наличие инвариантной 3-формы объема.

Теорема доказана.

Следствие 3. В предположениях теоремы 7 уравнение (1) явно интегрируется с помощью конечного числа алгебраических операций, дифференцирований и квадратур.

Дополнительные дифференцирования требуются для отыскания многозначного интеграла (см. также [24]).

Замечание. Теорема 7 справедлива и в случае, когда имеется линейный интегральный инвариант

$$
\int \varphi.
$$

Требуется только, чтобы 2-форма $\Phi = d\varphi$ удовлетворяла условию (56).

Поскольку дифференцированные уравнения указанных выше различных вариантов задачи трех тел не допускают нетривиальных полей симметрий и многозначных интегралов, то любой условный интегральный инвариант этих уравнений вида (51) может отличаться только постоянным множителем от инварианта

$$
\int_D dz \wedge dy - dH \wedge dx.
$$
Так как \(M = 3 \), то имеет смысл рассматривать лишь абсолютные интегральные инварианты третьего порядка. Соответствующая 3-форма имеет вид \(f\Omega \) и по лемме 3 функция \(f \) — интеграл уравнений (1). Для рассмотренных выше уравнений динамики \(f = \text{const} \).

Интегральные инварианты динамических систем на трехмерных многообразиях с положительной энтропией описаны в работе [25].

Задача об условиях существования интегральных инвариантов гамильтоновых систем со многими степенями свободы требует дополнительного рассмотрения.

М. Как показано в работе [26], наличие интегральных инвариантов тесно связано со свойствами ветвления решений дифференциальных уравнений в плоскости комплексного времени.

Мы рассмотрим эти вопросы на примере систем дифференциальных уравнений

\[
\dot{z}_i = v_i(z_1, \ldots, z_n), \quad 1 \leq i \leq n, \tag{58}
\]

инвариантных относительно преобразований подобия

\[
t \to t/\alpha, \quad z_1 \to \alpha^{g_1} z_1, \ldots, z_n \to \alpha^{g_n} z_n
\]

с целыми положительными \(g_j \). Критерий инвариантности уравнений (58) заключается в выполнении соотношений

\[
v_i(\alpha^{g_1} z_1, \ldots, \alpha^{g_n} z_n) = \alpha^{g_i+1} v_i(z_1, \ldots, z_n).
\]

Такие системы обычно называют квазиоднородными, а числа \(g_1, \ldots, g_n \) — показателями квазиоднородности. Квазиоднородные системы часто встречаются в приложениях. Примером служат уравнения Эйлера — Пуанкаре на алгебрах Ли с квадратичными правыми частями (которые упоминались в п. Ж): здесь можно положить \(g_1 = \ldots = g_n = 1 \). Несколько более сложными примерами являются уравнения Эйлера — Пуассона, описывающие вращение твердого тела вокруг неподвижной точки, а также уравнения задачи \(n \) гравитирующих тел.

Оказывается, для квазиоднородных систем задача об условиях однозначности решений в плоскости комплексного времени практически может быть доведена до конца. Мы воспроизводим здесь анализ уравнений (58), выполненный Х. Иошидой [27] по методу Ковалевской. Напомним знаменитый результат Ковалевской: общее решение дифференциальных уравнений Эйлера — Пуассона представляется морфоморфными функциями времени \(t \) только в тех случаях, когда имеется дополнительный первый интеграл. Именно таким путем она пришла к открытию нового случая интегрируемости, который теперь носит ее имя.
Добавление

Сначала заметим, что система (58) допускает частные мероморфные решения

\[z_1 = c_1/t^{q_1}, \ldots, z_n = c_n/t^{q_n}, \]

где постоянные \(c_1, \ldots, c_n \) удовлетворяют алгебраической системе уравнений

\[v_i(c_1, \ldots, c_n) = -g_i c_i, \quad 1 \leq i \leq n. \]

Как правило, эти уравнения имеют ненулевые комплексные корни.
Общее решение уравнений (58) ищем в виде

\[z_i = (c_i + x_i)^{-g_i}. \] \hspace{1cm} (59)

Можно показать, что функции \(t \mapsto x(t) \) удовлетворяют следующей системе дифференциальных уравнений

\[t \dot{x}_i = \sum_{j=1}^{n} K_{ij} x_j + \sum_{|m|=2}^{\infty} K_{m_1, \ldots, m_n}^{(i)} x_{m_1} \cdots x_{m_n}, \] \hspace{1cm} (60)

\[K_{ij} = \frac{\partial v_i}{\partial z_j}(c) + g_i \delta_{ij}, \]

\[K_{m_1, \ldots, m_n}^{(i)} = \frac{\partial^{m_1+\cdots+m_n} v_i}{\partial^{m_1} z_1 \cdots \partial^{m_n} z_n}(c). \]

Здесь \(\delta_{ij} \) — символ Кронекера. Матрица \(K = ||K_{ij}|| \) называется матрицей Ковалевской, а ее собственные значения \(\rho_1, \ldots, \rho_n \) — показателями Ковалевской.

Предложение 5. Если \(c \neq 0 \), то \(\rho = -1 \) — показатель Ковалевской.

Действительно, ненулевой вектор \(v(c) \) является собственным вектором матрицы \(K \) с собственным значением \(-1\). Положим, для определенности, \(\rho_1 = -1 \).

Теорема 8 (Ляпунов, [28]). Если все решения системы (58) однозначные функции комплексного времени, то

1) показатели Ковалевской — целые числа,
2) матрица Ковалевской приводится к диагональной форме \(\text{diag} [\rho_1, \ldots, \rho_n] \).

Доказательство основано на исследовании уравнений в вариациях

\[t \dot{x} = K x, \]

которые являются уравнениями Фукса. Они имеют частные решения

\[t^{\rho_i} \xi_i, \quad \xi_i \in \mathbb{C}^n, \] \hspace{1cm} (61)
где ξ_i — собственные векторы матрицы K, отвечающие собственным значениям ρ_i. Если ρ_i не целые, то решения (61) (а вместе с ними и функции (59)) ветвятся при обходе точки $t = 0$. Оказывается, свойство ветвления сохраняется и для решений полной системы (60).

С. В. Ковалевская решила задачу об условиях мероморфности общего решения системы (58). Для этого необходимо, чтобы ряды Лорана решений (58) содержали $n - 1$ произвольную постоянную. Еще один параметр возникает при замене t на $t + \beta$, $\beta = \text{const}$ (ввиду свойства автономности). Необходимое условие мероморфности решений (59) состоит в том, что ρ_2, \ldots, ρ_n — целые неотрицательные числа.

Функция $z \mapsto f(z)$ называется квазидиоднородной степени m, если

$$f(\alpha^{g_1}z_1, \ldots, \alpha^{g_n}z_n) = \alpha^m f(z_1, \ldots, z_n).$$

Любую аналитическую функцию f можно разложить в ряд по квазидиоднородным формам:

$$f(z) = \sum_{m \geq 0} f_m(z), \quad \text{deg} f_m = m.$$

Ясно, что квазидиоднородные формы разложения интеграла системы (58) сами будут первыми интегралами.

Теорема 9 ([27]). Пусть f — квазидиоднородный интеграл степени m системы (58) и $df(c) \neq 0$. Тогда $\rho = m$ — показатель Ковалевской.

Этот результат устанавливает замечательную связь между свойством мероморфности общего решения и наличием непостоянных интегралов.

Предположим теперь, что система (58) допускает абсолютный интегральный инвариант, порождаемый k-формой

$$\omega = \sum_{i_1 < \ldots < i_k} \omega_{i_1 \ldots i_k}(z) dz_{i_1} \wedge \ldots \wedge dz_{i_k}.$$

Эту форму также можно разложить в ряд по квазидиоднородным формам. Форма ω называется квазидиоднородной формой степени m, если

$$\omega_{i_1 \ldots i_k}(\alpha^{g_1}z_1, \ldots, \alpha^{g_n}z_n) = \alpha^j \omega_{i_1 \ldots i_k}(z), \quad j = m - g_{i_1} - \ldots - g_{i_k}. \quad (62)$$

Теорема 10 ([26]). Пусть квазидиоднородная k-форма ω степени m порождает абсолютный инвариант системы (58) и $\omega \neq 0$ в точке $z = c$. Тогда для некоторых индексов i_1, \ldots, i_k показатели Ковалевской удовлетворяют соотношению

$$\rho_{i_1} + \ldots + \rho_{i_k} = m. \quad (63)$$
Добавление

Теорема 10 является далеко идущим обобщением теоремы 9. Действительно, если f — квазеждуодородный интеграл степени m системы (58), то $\omega = df$ будет инвариантной квазиодородной формой степени m. Если $z = c$ не является критической точкой функции f, то в этой точке $\omega \neq 0$. Поскольку ω — 1-форма, то соотношение (63) дает нам, что $\rho_i = m$ для некоторого i.

В частности, если ω — квазиодородная форма объема степени m, то теорема 10 приводит к следующему соотношению для показателей Ковалевской:

$$\rho_1 + \ldots + \rho_n = m.$$ \hspace{1cm} (64)

Например, уравнения Эйлера — Пуанкаре на n-мерной унитарной алгебре Ли допускают стандартную инвариантную меру, порождаемую n-форму объема $dz_1 \wedge \ldots \wedge dz_n$. Согласно (62), она будет квазиодородной степени $n(j = 0)$ с показателями квазиодородности $g_1 = \ldots = g_n = 1$. Следовательно, из (64) вытекает, что в этом случае сумма всех показателей Ковалевской равна n.

В качестве иллюстративного примера рассмотрим волчок Эйлера, описываемый дифференциальной системой в \mathbb{R}^3

$$I\omega = I\omega \times \omega.$$ \hspace{1cm} (65)

Здесь ω — вектор угловой скорости, I — тензор инерции. Уравнения (65) — это уравнения Эйлера — Пуанкаре на алгебре $so(3)$. Для уравнений (65) имеются нетривиальные решения алгебраической системы

$$(Ic) \times c = -Ic, \quad c \neq 0.$$

Кроме этого, они допускают два квадратичных интеграла

$$(I\omega, \omega), \quad (I\omega, I\omega),$$

дифференциалы которых линейно независимы в точке $\omega = c$, если тензор инерции I не шаровой. Следовательно, по теореме Иошиды, $\rho = 2$ — показатель Ковалевской кратности два. Итак, показателями Ковалевской являются числа -1, 2, 2, сумма которых равна $\dim so(3) = 3$.

В работе [26] на самом деле рассматривалась более общая задача о наличии тензорных инвариантов уравнений (58) — тензорных полей вида

$$T_{j_1 \ldots j_q}^{i_1 \ldots i_p}(z),$$

инвариантных при действии фазового потока системы (58). Например, $(1,0)$-тензорам отвечают поля симметрий. В [26] доказано, что существование тензорных инвариантов влечет резонансные соотношения для показателей Ковалевской, обобщающие равенства (63):

$$\rho_{i_1} + \ldots + \rho_{i_p} - \rho_{j_1} - \ldots - \rho_{j_q} + m = 0.$$ \hspace{1cm} (66)
В частности, если имеется нетривиальное поле симметрий со степенью квазиоднородности \(m \), то среди показателей Ковалевской имеется число \(\rho = -m \). Поскольку поле \(v \) само является полем симметрий со степенью квазиоднородности \(m = 1 \), то мы приходим к заключению предложения 5.

Н. В этом пункте мы обсудим круг вопросов, поднятых Картаном в главах XV и XVI. Он не рассматривает подробно общей задачи интегрирования системы дифференциальных уравнений, допускающих заданное число известных интегральных инвариантов, ограничившись наиболее простым случаем, когда система (1), заданная на \(n \)-мерном многообразии, имеет \(n - 1 \) линейных абсолютных инвариантов.

Мы расширим задачу Картана, имея в виду использование известных тензорных инвариантов произвольной структуры. Прежде всего полезно задаться вопросом: сколько независимых инвариантов вообще необходимо иметь для точного интегрирования системы (1)? Наше наблюдение состоит в следующем: кроме тривиального инварианта — поля симметрий \(v \) — надо знать еще \(n - 1 \) инвариантов. Поясним этот эмпирический факт некоторыми примерами. Хорошо известно, что для явного интегрирования автономной системы \(n \) дифференциальных уравнений достаточно знать \(n - 1 \) независимых интегралов, либо \(n - 1 \) независимых полей симметрий, порождающих разрешимую алгебру Ли (теорема Ли), либо \(n - 2 \) независимых интегралов и инвариантную меру (теорема Эйлера — Якоби). Знаменитая теорема Лиувилля о полной интегрируемости гамильтоновых систем также подтверждает это наблюдение: в системе с \(n \) степенями свободы достаточно иметь \(n \) независимых интегралов, находящихся попарно в инволюции; кроме этих интегралов гамильтонова система имеет еще \(n \) гамильтоновых полей симметрий, порождаемых этими интегралами (гамильтониан, конечно, порождает тривиальный инвариант).

Картан рассматривает похожую ситуацию: предполагается, что система (1) допускает \(n - 1 \) независимых инвариантных 1-форм \(\varphi_1, \ldots, \varphi_{n-1} \):

\[
i_v \varphi_j = 0, \quad L_u \varphi_j = 0, \quad j = 0, \ldots, n - 1.
\]

В п. 156 показано, что с самого начала можно считать выполненными равенства

\[
d\varphi_k = \sum_{p < q} c_{pq}^k \varphi_p \wedge \varphi_q
\]

с постоянными коэффициентами \(c_{pq}^k \).

Картан вводит \(n - 1 \) векторных полей \(u_1, \ldots, u_{n-1} \) с помощью равенств

\[
i_u \varphi_k = \delta_{jk},
\]
где δ-символ Кронекера. Ввиду предположения о независимости 1-форм φ, равенства (68) однозначно определяют набор независимых полей u_j с точностью до слагаемых вида λv, где λ — некоторая функция. В п. 164 показано, что эти поля являются полями симметрий (т. е. $[v, u_j] = \lambda_j v$ для всех j), а также выведены соотношения

$$[u_p, u_q] = - \sum c_{pq}^k u_k + \lambda_{pq} v.$$

Здесь λ_j и λ_{pq} — некоторые гладкие функции.

Поэтому, если коэффициенты в (67) являются структурными константами некоторой разрешимой алгебры Ли, то уравнения (1) интегрируются с помощью квадратур (теорема Ли).

На эти факты можно взглянуть с иной точки зрения. Вместо общей системы (1) будем рассматривать квазиоднородную систему (58) из п. Н и предположим, что она допускает квазиоднородные тензорные инварианты с целыми степенями, структура которых и их количество определяется указанными выше теоремами об интегрируемости. Если предположить дополнительно, что в выделенной точке $z = c$ эти инварианты не обращаются в нуль, то все показатели Ковалевской оказываются целыми числами с простыми элементарными делителями (т. е. выполнены заключения теоремы Ляпунова о необходимых условиях однозначности общего решения).

В связи с этим замечанием возникают два предположения.

1) При выполнении условий известных теорем об интегрируемости все решения квазиоднородной системы (58) в виде рядов (59), действительно, являются однозначными функциями комплексного времени.

2) Дополнительные условия на тензорные инварианты, фигурирующие в условиях теорем об интегрируемости (структура коммутационных соотношений для полей симметрий в теореме Ли, свойства структурных постоянных в соотношении (67)) можно вывести из условия однозначности решений квазиоднородных систем.

Это наблюдение приводит к следующему эвристическому способу получения условий интегрируемости: число и тип ее инвариантов должны приводить к ряду соотношений между показателями Ковалевской вида (66) таких, что эти показатели с необходимостью являются целыми.

В качестве примера укажем следующее утверждение, которое, по-видимому, ранее не упоминалось.

Теорема 11. Пусть система (1) имеет $n - 2$ независимых коммутирующих векторных полей симметрий u_3, \ldots, u_n и инвариантную n-форму Ω, таких, что

$$L_{u_k} \Omega = 0, \quad 3 \leq k \leq n.$$
ДОБАВЛЕНИЕ

Тогда эта система интегрируема в квадратурах.

Замечание. Для квазиподнородных систем наличие $n - 2$ квазиподнородных полей симметрий, линейно независимых в точке $z = c$, влечет целочисленность (и отрицательность) $n - 2$ показателей Ковалевской (п. Н). Ещё один из показателей равен -1. Существование инвариантной меры даёт соотношение (64), из которого вытекает целочисленность оставшегося показателя Ковалевской.

Доказательство теоремы 11. Во-первых, заметим, что $d i_v \Omega = L_v \Omega - i_v d \Omega = 0$. Далее,

$$i_u (d i_v \Omega) = (-d i_u + L_u)(i_v \Omega) = -d(i_u i_v \Omega) + L_u i_v \Omega = 0.$$

Поскольку u_3 — поле симметрий, то $[v, u_3] = 0$ и

$$L_u i_v \Omega = i_v L_u \Omega = 0.$$

Следовательно,

$$d(i_u i_v \Omega) = 0.$$

Аналогично получаем

$$d(i_u i_{u_1} \ldots i_{u_3} i_v \Omega) = 0.$$

По лемме Пуанкаре,

$$\Omega(v, u_3, \ldots, u_n, \cdot) = df.$$

Отсюда получаем, что $i_v df = L_v f = 0$ и $i_u df = L_u f = 0$. Следовательно, f является интегралом (1) и каждого из векторных полей $u_k (k \geq 3)$. Поскольку векторы v, u_3, \ldots, u_n независимы, то $f \neq \text{const}.

Таким образом, поля v, u_3, \ldots, u_n касаются интегральных гиперповерхностей $\Sigma_a = \{x : f(x) = a\}$ и коммутируют. Остаётся применить теорему Ли для ограничения системы (1) на Σ_a. Утверждение доказано.

К сожалению, теория интегрирования дифференциальных уравнений с использованием тензорных инвариантов пока еще недостаточно развита. Полученные в этом направлении результаты пока носят разрозненный характер. В заключение этого пункта укажем один специальный результат, найденный недавно П. Топаловым.

Теорема 12 ([29]). Предположим, что геодезический поток на изоэнергетической поверхности Q^3 допускает тензорный инвариант типа (p, q), который обязательно обращается в нуль на конечном числе замкнутых траекторий N. Тогда геодезический поток имеет непостоянный интеграл на универсальной накрывающей над $Q^3 \setminus N$.

Стоит, наверное, отметить, что обращение в нуль тензорного инварианта не является типичным свойством.
О. В качестве примеров, иллюстрирующих общую теорию инвариантов, Э. Кардан постоянно использует гамильтоновы системы, динамику идеальной жидкости и геометрическую оптику. Оказывается, эти три на вид различные теории имеют под собой одну общую математическую конструкцию, в которой интегральные инварианты играют центральную роль.

Как хорошо известно, уравнения движения идеальной жидкости (уравнения (38) при \(\nu = 0 \)) можно представить в следующей форме:

\[
\frac{\partial v}{\partial t} + (\text{rot} \, v) \times v = -\frac{\partial f}{\partial x},
\]

где \(f = v^2/2 + P + V \), \(P \) — функция давления (для однородной жидкости \(P = p/\rho \)). Уравнение (69) называется уравнением Ламба.

Рассмотрим теперь распространение света в неоднородной изотопной среде с показателем преломления \(n(x) \), \(x \in \mathbb{R}^3 \): световые частицы движутся по лучам со скоростью, равной \(1/n \). При построении оптических изображений существенную роль играют не отдельные лучи, а системы лучей — семейства световых лучей, одноразно определяющих пространство: через каждую точку \(x \) проходит единственный луч, причем направление луча перпендикулярно от точки \(x \). Таким образом, система лучей однозначно связана с полем скоростей \(v(x) \) световых частиц. Можно показать, что это поле удовлетворяет уравнению

\[
(\text{rot} \, n^2 v) \times v = 0.
\]

Для однородной среды, когда \(n = \text{const} \), уравнение (70) совпадает с уравнением стационарного течения жидкости, когда поле скоростей коллинеарно своему ротору. Примером служит известное \(ABC \)-течение Арнольда: компоненты поля скорости имеют вид

\[
A \sin x_3 + C \cos x_2, \quad B \sin x_1 + A \cos x_3, \quad C \sin x_2 + B \cos x_1.
\]

Здесь \(\text{rot} \, v = v \). Поскольку поле \(2\pi \)-периодично по координатам \(x_1 \), \(x_2 \), \(x_3 \), то его можно рассматривать на трёхмерном торе. Для почти всех значений \(A, B, C \) на торе имеются области с хаотическим поведением траекторий.

Нетрудно найти условия, при которых система лучей ортогональна некоторому семейству поверхностей в \(\mathbb{R}^3 \):

\[
(v, \text{rot} \, n^2 v) = 0.
\]

Сопоставляя с (70), получаем, что тогда \(\text{rot} \, n^2 v = 0 \). Следовательно,

\[
n^2 v = \frac{\partial \varphi}{\partial x}, \quad \varphi : \mathbb{R}^3 \rightarrow \mathbb{R}.
\]

Такие системы лучей называются системами Гамильтона. Классическим результатом является теорема Малюса: если система лучей
ортогональна некоторой регулярной поверхности, то она будет системой Гамильтона и останется такой после любого числа отражений и преломлений. Теорема Малюса просто доказывается с применением линейного интегрального инварианта

\[\int n^2(v, dx) \]

и обсуждается Картаном в п. 193.

Системы лучей, для которых \(\text{rot} n^2 v \neq 0 \), называются системами Куммера. По сравнению с системами Гамильтона они меньше изучены.

Рассмотрим теперь канонические уравнения Гамильтона (12) с гамильтонианом \(H(x, y, t) \), который может явно зависеть от времени. Предположим, что эти уравнения имеют \(n \)-мерное инвариантное многообразие, задаваемое уравнениями

\[y = u(x, t), \tag{71} \]

gде \(u \) — гладкое ковекторное поле на конфигурационном многообразии \(N^n \).

Введем векторное поле скорости \(v \) на \(N \), положив

\[v(x, t) = \dot{x} = \left. \frac{\partial H}{\partial y} \right|_{y = u}, \]

а также функцию \(h(x, t) = H(x, u(x, t), t) \). Оказывается, поля \(u, v \) и функция \(h \) связаны соотношением

\[\frac{\partial u}{\partial t} + (\text{rot} u) v = - \frac{\partial h}{\partial x}, \tag{72} \]

где

\[\text{rot} u = \left\| \begin{array}{c} \frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \end{array} \right\| \]

— кососимметричная \(n \times n \)-матрица. При \(n = 3 \) значение \((\text{rot} u) v \) совпадает с обычным векторным произведением \(\text{rot} u \times v \).

Уравнение (72) по виду совпадает с (69); будем его также называть уравнением Лаамба. Сходство вида уравнений (69), (70) и (72) дает возможность развить аналогию между гидродинамикой, геометрической оптикой и гамильтоновой механикой. Наличие инвариантных соотношений (71) позволяет свести уравнения Гамильтона (12) в \(2n \)-мерном фазовом пространстве к системе дифференциальных уравнений

\[\dot{x} = v(x, t) \tag{73} \]

на \(n \)-мерном конфигурационном пространстве. Система (73) обладает многими свойствами, характерными для течений идеальной жидкости [30].
Добавление

Положим $\omega = \sum u_i dx_i$, $\Omega = d\omega$. Тогда (72) можно переписать в следующем эквивалентном виде:

$$\frac{\partial \omega}{\partial t} + i_v \Omega = -dh.$$

Система (71) допускает относительный интегральный инвариант

$$\oint \omega.$$

Это — аналог теоремы Томсона о сохранении циркуляции.

Поле u назовем потенциальным, если $\text{rot} \ u = 0$; локально $u = \partial \varphi / \partial x$. Справедлива теорема Лагранжа: если при $t = 0$ поле u потенциально, то оно будет потенциальным при всех t. Это — простое следствие теоремы Томсона. Подставляя $u = \partial \varphi / \partial x$ в уравнение (72), получим

$$\frac{\partial \varphi}{\partial t} + H \left(x, \frac{\partial \varphi}{\partial x}, t \right) = f,$$

где f — некоторая функция t. В гидродинамике соотношение (74) называется интегралом Лагранжа—Коши, а в гамильтоновой механике — уравнением Гамильтона—Якоби. После калибровки потенциала

$$\varphi \mapsto \varphi - \int f(t) \, dt$$

функцию f в правой части (74) можно сделать равной нулю.

Ненулевые векторы w, удовлетворяющие равенству $(\text{rot} \ u) w = 0$ (или $i_w \Omega = 0$), в гидродинамике называются вихревыми векторами. Распределение вихревых векторов интегрируемо: через каждую точку $x \in N$ проходит единственное максимальное интегральное многообразие этого распределения, которое в каждой своей точке касается всех вихревых векторов. Такие многообразия естественно назвать вихревыми. По терминологии Картана — это характеристические многообразия 2-формы Ω. Подчеркнем, что вихревые многообразия определяются при фиксированном значении t.

Справедлив аналог теоремы Гельмгольца — Томсона: фазовый поток системы (73) переводит вихревые многообразия в вихревые многообразия. В стационарном случае (когда поля u, v и функция h не зависят явно от t) функция h постоянна на линиях тока (интегральных кривых поля v) и на вихревых многообразиях. Это — обобщение знаменитой теоремы Бернулли.

Для исследования уравнений Ламба можно применить идеи и методы, развитые в книге Картана. При этом раскрываются интересные связи между подходом Картана и идеями из гидродинамики. Например,
ДОБАВЛЕНИЕ

согласно п. 119 главы XII, 1-форму \(\omega \) локально можно привести к следующему виду:

\[
\omega = dS + x_1 dx_2 + \ldots + x_{2k-1} dx_{2k}.
\] (75)

Здесь \(S \) — некоторая гладкая функция от \(x \) и \(t \), а \(2k \) — ранг 2-формы \(\Omega = dw \). Запишем в явном виде компоненты ковекторного поля \(u \)

\[
\begin{align*}
 u_1 &= \frac{\partial S}{\partial x_1}, & u_2 &= \frac{\partial S}{\partial x_2} + x_1, & \ldots, & u_{2k+1} &= \frac{\partial S}{\partial x_{2k+1}}, & \ldots, & u_n &= \frac{\partial S}{\partial x_n},
\end{align*}
\]

и уравнение Ламба (72)

\[
\dot{x}_1 = -\frac{\partial}{\partial x_2} \left(\frac{\partial S}{\partial t} + h \right), \quad \dot{x}_2 = \frac{\partial}{\partial x_1} \left(\frac{\partial S}{\partial t} + h \right),
\] (76)

\[
\begin{align*}
 \dot{x}_{2k-1} &= -\frac{\partial}{\partial x_{2k}} \left(\frac{\partial S}{\partial t} + h \right), & \dot{x}_{2k} &= \frac{\partial}{\partial x_{2k-1}} \left(\frac{\partial S}{\partial t} + h \right),
\end{align*}
\]

\[
\frac{\partial}{\partial x_{2k+1}} \left(\frac{\partial S}{\partial t} + h \right) = \ldots = \frac{\partial}{\partial x_n} \left(\frac{\partial S}{\partial t} + h \right) = 0.
\] (77)

Из (77) вытекает, что \(\partial S/\partial t + h \) — функция лишь от координат \(x_1, \ldots, x_{2k} \) и времени \(t \). Эти соотношения обобщают уравнение Гамильтона — Якоби и переходят в него при \(k = 0 \), когда поле \(u \) потенциально. При этом функция \(S \) будет играть роль действия по Гамильтону.

Таким образом, (76) будет замкнутой системой канонических уравнений Гамильтона с гамильтонианом \(\partial S/\partial t + h \).

Согласно (75), в этих переменных

\[
\Omega = dx_1 \wedge dx_2 + \ldots + dx_{2k-1} \wedge dx_{2k}
\]

и поэтому вихревые многообразия (характеристические \((n-2k)\)-мерные поверхности) задаются уравнениями

\[
x_1 = \alpha_1, \ldots, x_{2k} = \alpha_{2k}, \quad \alpha = \text{const}.
\]

Поскольку производные \(\dot{x}_1, \ldots, \dot{x}_{2k} \) зависят лишь от \(x_1, \ldots, x_{2k}, t \), то отсюда сразу же вытекает теорема Гельмгольца — Томсона о вмороженности вихревых многообразий в поток системы (73).

В гидродинамике переменные \(x_1, \ldots, x_{2k} \) и функция \(S \) называются потенциалами Клебша. Еще в 1857 г. Клебш представил 1-форму циркуляции скорости \(v_1 dx_1 + v_2 dx_2 + v_3 dx_3 \) в виде (75). При \(n = 3 \) уравнения (76) и (77) получены Клебшем и Стюартом (см., например, [31]).
П. В гидродинамике к уравнению (69) добавляют уравнение неразрывности
\[\frac{\partial \rho}{\partial t} + \text{div}(\rho v) = 0, \] (78)
эквивалентное наличию интегрального инварианта
\[\int \rho \, d^3x \]
— массы подвижного объема. Спрашивается, допускает ли подобные инварианты система (79) в общем случае?

В этом вопросе существенную роль играет понятие класса дифференциальной формы, введенное Картаном (гл. IV). Мы будем рассматривать формы постоянного класса. Напомним, что класс замкнутой 2-формы всегда четный.

Предложение 6. Пусть \(n = 2s \) четно и класс 2-формы \(\Omega = d\omega \) равен \(n \). Тогда система (73) допускает интегральный инвариант
\[\int \tau, \quad \tau = \Omega^s. \] (79)

Это утверждение, между прочим, содержит как частный случай знаменитую теорему Лиувилля о сохранении фазового объема в гамильтоновых системах. Пусть теперь \(n = 2s + 1 \) нечетно и класс 1-формы \(\omega \) равен \(n \). Тогда \(n \)-форма \(\tau = \omega \wedge \Omega^s \) — форма объема на \(M \), однако в общем случае она не будет инвариантной. Действительно, для производной по времени от \(\tau \) можно получить следующее выражение:
\[\dot{\tau} = dg \wedge \Omega^s, \]
где \(g = i_v \omega - h \) — лагранжан рассматриваемой задачи. Поскольку форма \(\Omega \) замкнута, то
\[dg \wedge \Omega^s = d(g\Omega^s). \]
Поэтому для компактного \(M \) имеем
\[\frac{d}{dt} \int_M \tau = \int_M dg \wedge \Omega^s = \int_M d(g\Omega^s) = 0. \]
Таким образом, \(\tau \)-объем всего \(M \) сохраняется. Это замечание, однако, содержательно лишь для неавтономных систем.

Рассмотрим важный частный случай, когда уравнения (72) являются уравнениями Ламба для стационарной \(n \)-мерной инвариантной поверхности гамильтоновой системы с гамильтонианом, квадратичным по импульсам (это случай отвечает движению по инерции).
ДОБАВЛЕНИЕ 255

Предложение 7 (132). В рассматриваемом случае, когда форма ω имеет
нечетный класс $n = 2s + 1$, система (73) допускает интегральный
инвариант (79), где $\tau = \omega \wedge \Omega^s$.

Если класс форм ω и Ω не максимальный, то с их помощью
вообще не удается получить форму объема. Таким образом, вопрос о
наличии инвариантных мер уравнений (73) является содержательной
задачей.

Наиболее общий подход заключается в поиске полного решения
$u(x, t, c), \ c = (c_1, \ldots, c_n)$ уравнений Ламбда, которое удовлетворяет
условию невырожденности:

$$\rho = \frac{\partial (u_1, \ldots, u_n)}{\partial (c_1, \ldots, c_n)} \neq 0. \tag{80}$$

Для потенциальных решений $u = \partial \varphi / \partial x$ полное решение уравнения
Ламбда переходит в полный интеграл $\varphi(t, x, c)$ уравнения Гамильтона—
Якоби (74). В этом случае неравенство (80) принимает известный вид

$$\det \left| \frac{\partial^2 \varphi}{\partial x_i \partial c_j} \right| \neq 0.$$

Метод Гамильтона — Якоби обсуждается Картаном в гл. XIV.

Предложение 8. При фиксированных значениях с функция (80) удовле-
творяет уравнению неразрывности (78), где $\text{div} = \sum \partial / \partial x_i$.

Таким образом, система (73) допускает интегральный инвариант

$$\int \rho \, d^nx.$$

Предложение 8 выводится из теоремы Лиувилля о сохранении фазового
объема гамильтоновых систем.

В заключение рассмотрим вопрос о существовании инвариантной
меры уравнений (73) в задаче о геодезических линиях левоинвариант-
ных метрик на группах Ли. Пусть G — группа Ли, g — ее
алгебра, T — левоинвариантная метрика на G — кинетическая
энергия механической системы с пространством положений G. Если
$\omega = (\omega_1, \ldots, \omega_n) \in g$ — скорость системы, то

$$T = \frac{1}{2} \sum I_{ij} \omega_i \omega_j. \tag{81}$$

Ввиду предположения о левоинвариантности, $I_{ij} = \text{const}$. Симметрич-
ная положительно определенная матрица $I = \|I_{ij}\|$ — тензор инерции
ДОБАВЛЕНИЕ

системы. Теорема об изменении момента приводит к уравнениям Эйлера — Пуанкаре на алгебре \(g \) (см. п. Ж), которые следует дополнить \(n (= \dim G) \) кинематическими соотношениями

\[
\dot{x}_i = \sum_j v_i^j \omega_j,
\]

(82)

gде \(x_1, \ldots, x_n \) — локальные координаты на группе \(G \), \(v_j = (v_j^1, \ldots, v_j^n) \) — левоинвариантные поля на \(G \), для которых справедливы коммутационные соотношения

\[
[v_i, v_j] = \sum_k c_{ij}^k v_k.
\]

Пусть \(w_1, \ldots, w_n \) — правоинвариантные поля на группе \(G \). Их фазовые потоки представляют семейства левых сдвигов. Поскольку лагранжан \(T \) левоинвариантен, то уравнения движения на \(TG \) допускают \(n \) независимых нетеровых интегралов

\[
\frac{\partial T}{\partial \dot{x}} \cdot w_i = c_i, \quad 1 \leq i \leq n.
\]

(83)

Ввиду (81) и (82), левые части этих уравнений линейны по \(\omega \). Из (83) скорости \(\omega \) можно представить как однозначные функции на группе \(G \) (при фиксированных значениях \(c_1, \ldots, c_n \)). В результате получаем автономные уравнения на группе \(G \) вида (73):

\[
\dot{x}_i = \sum v_i^j(x) \omega_j(x, c).
\]

(84)

Теорема 13 ([33]). Если группа \(G \) унидоморфная (т.е. \(\sum c_i^k k = 0 \) для всех \(1 \leq i \leq n \)), то при всех значениях с фазовый поток системы (84) сохраняет меру Хаара на \(G \).

Напомним, что на каждой группе имеется единственная (с точностью до постоянного множителя) мера, инвариантная при всех левых (правых) сдвигах. В случае унидоморфной группы это мера (называемая мерой Хаара) биинвариантна. В частности, все компактные группы унидоморфны.

Теорема 13 доказывается с помощью предложения 8. Она является следствием более общего результата: фазовый поток системы (84) сохраняет правоинвариантную меру на \(G \) (см. [33]).

Р. В п. М введены многозначные интегралы динамических систем. Этот объект естественным образом возникает также в связи с теорией Картана интегрирования системы \(n \) дифференциальных уравнений с известным набором \(n - 1 \) независимых инвариантных 1-форм (п. О).
Добавление

Пусть, например, все константы C_{pq}^k в (67) равны нулю. Тогда 1-формы $\varphi_1, \ldots, \varphi_{n-1}$ будут многозначными интегралами. Действительно, $d\varphi_k = 0$ и $i_v \varphi_k = 0$. Следовательно, локально $\varphi_k = df$, где f — некоторая непостоянная гладкая функция, и

$$i_v df = L_v f = 0.$$

Можно задаться вопросом, существуют ли вообще многозначные интегралы? Вот простой пример системы на n-мерном торе $T^n = \{x_1, \ldots, x_n \mod 2\pi\}$:

$$\dot{x}_1 = \omega_1, \ldots, \dot{x}_n = \omega_n,$$

где ω — нерезонансный набор постоянных частот. Функции

$$\omega_j x_i - \omega_i x_j \quad (i, j = 1, \ldots, n; \ i \neq j)$$

(точнее, их дифференциалы) являются многозначными интегралами; среди них $n - 1$ независимых. Стоит отметить, что виду эргодичности система (85) не допускает ни одного однозначного интеграла, который был бы непостоянной непрерывной функцией на T^n.

Можно привести примеры многозначных интегралов канонических уравнений Гамильтона. Положим

$$H = \sum \omega_i y_i + f(x_1, \ldots, x_n),$$

где $f : T^n \to \mathbb{R}$, а постоянные числа ω рационально несоизмеримы. Гамильтона и H — однозначная функция на фазовом пространстве $\mathbb{R}^n \times T^n$. Уравнения Гамильтона с гамильтонацией H допускают набор многозначных интегралов (86). Можно показать, что при подходящем выборе аналитической функции f и набора чисел $\omega_1, \ldots, \omega_n$. Эта гамильтона система не имеет обычных однозначных интегралов независимых от гамильтона и H (см. [34, 35]).

Функция H и $n - 1$ независимых многозначных функций из (86) образуют полный набор инволютных интегралов. Стоит отметить, что для многозначных интегралов корректно определена их скобка Пуассона. Далее, поверхностью уровня многозначных функций $\varphi_1, \ldots, \varphi_n$ (1-форм) естественно назвать интегральную поверхность интегрируемого n-мерного распределения

$$\varphi_1 = \ldots = \varphi_n = 0.$$

Для гамильтононовых систем с многозначными интегралами справедлив аналог геометрической теоремы Лиувилла об интегралах в инволюции: если для гамильтоновой системы с n степенями свободы найдется n независимых многозначных интегралов, попарные скобки Пуассона которых равны нулю и $(2n - 1)$-мерные энергетические многообразия компактны, то n-мерные поверхности уровня этих интегралов диф-
феоморфны прямому произведению $T^k \times \mathbb{R}^{n-k}$, причем можно выбрать
ДОБАВЛЕНИЕ

на них k угловых и $n - k$ линейных переменных, которые равномерно меняются со временем [36].

Если интегралы однозначны, то их совместные уровни компакты и тогда $k = n$. Условие компактности энергетических многообразий гарантирует, что гамильтоновы поля, порожденные интегралами, не стеснены на n-мерных совместных поверхностях уровня.

В заключение обсудим вопрос о многоизначных интегралах геодезического потока на компактном римановом многообразии (M^n, ds). Справедлива

Теорема 14 ([37]). Если $n > 2$, то любой многоизначный интеграл геодезического потока будет точной 1-формой. Если $n = 2$ и геодезический поток допускает многоизначный интеграл, то обязательно найдется однозначный первый интеграл.

Укажем пример многоизначного интеграла, когда M является двумерным тором T^2. Пусть ds — плоская метрика на T^2. Введем угловые координаты x_1, x_2, θ на единичном расслоении $T^1 T^2 = T^1 \times T^2$: x_1, x_2 — координаты на конфигурационном торе, θ — угловая переменная на единичном слое. Тогда форма $d\theta$ — многоизначный интеграл.

Список цитированной литературы

[29] Топалов П. Тензорные инварианты натуральных механических систем на компактных поверхностях и соответствующие им интегралы // Матем. сборник (в печати).

