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Problemata Nova, ad Quorum
Solutionem Mathematici Invitantur

VALERY V. KOZLOV

We would like to draw the attention of the reader to some mathematical prob-
lems of classical mechanics. They came out in connection with investigations at
the Theoretical Mechanics Department at Moscow State University. It is worth
mentioning that, beginning with Newton, classical mechanics was always a source
of new mathematical problems. Recall the Kepler equation

u—esinu=7¢,
relating the eccentric anomaly u of the orbit to the mean anomaly {, which is a

linear function of time. Lagrange, when he was solving the Kepler equation, was
one of the first to use Fourier series. He obtained the following expression

u=0+2%" J’”E;"") sinm( .

m=1

Here J,,(z) is the Bessel function of mth order, which was first introduced precisely
in this problem. Looking for a representation of the solution of the Kepler equation
as a power series in eccentricity, Lagrange came to the general theorem on local
inversion of holomorphic functions (it is known now as the Burman-Lagrange
theorem). According to Lagrange,

et e m—1 )
u=ZCm(C);!, c0=é',c,,,=WsmmC (m=>1).

m=0

Last, but not least, let us mention that the main motivation that led Cauchy to his
discoveries in complex analysis was to determine rigorously the region of conver-
gence for the Lagrange power series (it is convergent for e < 0.6627434...). Of
course, the problems presented below do not pretend to be of such global impor-
tance. They are intended in the first place for young mathematicians who would
like to try their skills in this interesting field.

We shall start our discussion with some problems of stability theory.
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1. According to the famous Lagrange—Dirichlet theorem, a position of equilib-
rium is stable if the potential energy has a strict local minimum in this position.
Unfortunately, the inverse theorem is not true. This is shown by a simple counterex-
ample suggested by Painlevé (to find an example is a good problem for those who
are not acquainted with this result). However, in the Painlevé example, the potential
energy is of only finite smoothness. Later Wintner provided a counterexample with
the infinitely smooth potential.

In 1892 Lyapunov formulated the inversion problem of the Lagrange-Dirichlet
theorem in the analytic case. In spite of serious efforts of many mathematicians and
experts in mechanics, a complete positive solution of the Lyapunov problem was
obtained only hundred years later by Palamodov (see his article in this volume). To
prove instability, he constructed a suitable Lyapunov function.

Merging Palamodov’s theorem with the result of [1], it is possible to prove that
if x = (x1, ..., x,) = 0is an isolated position of equilibrium that is not a point
of local minimum for the potential energy, then the equations of motion have a
solution x(¢) such that x(z) — 0 as t — —oo.

Incidentally, since the dynamics equations are reversible, x (—1) also is an asymp-
totic solution: it tends to the equilibrium x = 0 as ¢t — oo,

a. Does the existence of an asymptotic solution hold in general (without the
assumption that the critical point x = 0 of the potential energy is isolated)?

Earlier the problem of inversion of the Lagrange-Dirichlet theorem was treated
by the author (in collaboration with Palamodov), using the first Lyapunov method.
This method is based on constructing asymptotic solutions of dynamic equations
in the form of a certain series (see the paper [2], where references to preceding
publications can be found).

Let V = V5 + V3 + ... be the Maclaurin series for the potential energy; Viisa
homogeneous form in x of degree k > 2. If x = 0 is not a minimum for V>, then,
as was proved by Lyapunov, the equations of motion have a nontrivial asymptotic
solution of the form

(1 Zx,,,(t)e'"’)" , A =const >0,

m=1

where x,,(¢) is a polynomial in ¢ with constant coefficients. In the analytic case
this series is convergent for all sufficiently large values of ¢. By reversibility, the
equilibrium x = 0 is unstable.

The more general case

V:V2+Vm+Vm—H+~'-, m23:

is considered in [2]. Here the form V5 is nonnegative and the dimension of the plane
1 = {x : Va(x) = 0} is positive. Let W, be the restriction of the form V,, to the
plane I1. It turns out that if x = 0 is not a minimum for W,,, the system has an
asymptotic solution in the form of a series

o X (Int
(2) Z% u = const >0,
m 1
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where x,,( - ) are polynomials with constant coefficients.

b. Is it always true that if a critical point of the potential energy is not a minimum,
then the equations of motion have an asymptotic solution of the form (1) or (2), or
series with multiple logarithms are needed?

If the system is analytic and V, = 0, the series (2) is convergent for sufficiently
large ¢ (Kozlov, Palamodov; 1982). However, if ¥, # 0, the series (2) are, as a rule,
divergent. Here is a simple model example:

o av w22 av o 3 y3
(3) X = ax, y=x —8—)-)', V =—6x +7

The presence of the term x> means that the kinetic energy is noneuclidean.
Equations (3) have a formal solution

1

(4) xZﬁ) Yy =

|~

(=2}

t 12 @on = 120

i az, (=1)"(2n + 5)!
—, —_—
=0

The radius of convergence of the series for y is zero.

However, according to the remarkable theorem by Kuznetsov [3], even in the
case when the series (2) is divergent, the equations of motion have a solution such
that the series (2) is its asymptotic representation. Incidentally, the work [3] was
stimulated by investigations on the inversion of the Lagrange-Dirichlet theorem.
As an illustration, we shall give the exact asymptotic solution of the system (3)
corresponding to the formal series (4):

(5) x(t) = =— y(t) = —sint €053 4s + cost SIS s
‘ 56 1 56

Performing successive integration by parts, it is possible to obtain the series (4) from
these formulas. The function y( - ) in (5) can be regarded as a sum (in a generalized
sense) of the divergent series (4).

c. Is it always possible to represent asymptotic solutions corresponding to divergent
series (2) in an integral form like (5) with finite “kernels”?

¢’. Is it true that in the analytic case to every formal solution in the form of a
series there corresponds a unique “real” solution such that this series is its asymptotic
representation?

2. Now let us turn to problems of another nature, connected with the existence
of tensor conservation laws.

Let M be a two-dimensional closed analytic surface that serves as the configu-
ration space for a mechanical system with two degrees of freedom. We shall study
only inertial motion and assume that the kinetic energy H (Riemannian metric on
M) is an analytic function on TM, quadratic in velocity. According to the Mauper-
tuis principle, all trajectories of the system are geodesics. Hence the corresponding
dynamical system on the invariant three-dimensional surface H = 1 is often called
a geodesic flow.

In 1979 the author proved the following theorem: if the genus of the surface M is
greater than one, the geodesic flow does not admits nonconstant analytic integrals.
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This result allows us to speak about purely topological obstacles to the integrability
of reversible systems.

a. What multidimensional surfaces M admit geodesic flows with a complete set of
independent analytic integrals?

Significant progress in this problem was achieved by Taimanov [4]. He proved,
in particular, that the Betti numbers of a connected n-dimensional configuration
space with a complete set of first integrals satisfy the inequalities

bk<<z>, nggn

Unfortunately, this elegant result does not solve the whole problem.

In the two-dimensional case, geodesic flows with first integrals that are indepen-
dent of H may exist only on the sphere S? and on the torus 7> (we consider the
orientable case). The case of the two-dimensional torus is the most interesting, since
it is possible to introduce global isotermic angle coordinates ¢, ¢, on the torus, so
that the Hamiltonian function takes the simple form:

(6) H = Alqr, 2)(pt + p3)/2.

Here p, is canonical momentum dual to g;.

Every analytic integral can be expanded in a Maclaurin series in powers of
momenta. It is evident that every homogeneous part of the series is also an integral.
Hence, following Birkhoff, we should study systems admitting first integrals that are
polynomial in momentums. Birkhoff showed that the existence of linear integrals is
related to hidden cyclic coordinates, and quadratic integrals are related to separable
variables. For the case of the torus, global versions of these results are given in [5].

Bolotin suggested the following conjecture.

b. If the system on the torus with the Hamiltonian (6) has an independent polyno-
mial integral of degree k, then there exists an integral independent of H that is linear
or quadratic in momentum.

Is this true?

From the point of view of the Maupertuis principle, the problem of existence
of polynomial integrals for Hamiltonian systems with the Hamiltonian function
H = (p? + p3)/2+ V(q1, q2), is closely related to the previous problem. Here ¥
is an analytic function on the torus T?. In [6] this problem is treated for systems
on the n-dimensional torus with a Hamiltonian of a similar form. The potential
energy is assumed to be a trigonometric polynomial on T". It is proved that if the
Hamiltonian equations admit » independent polynomial integrals, then there exist
n independent integrals in involution of first or second degree. From the technical
point of view, the proof is rather complicated. It is based on the classical approach
of perturbation theory.

c. Is this statement true for Hamiltonian systems with general analytic periodic
potentials?

For the case of integrals of third or fourth degree in momentum, the positive
answer was obtained by Bialy [7].

The same questions can be formulated for reversible systems with the two-
dimensional sphere as the configuration space. However, in this case the situation
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is completely different. There exist metrics on the two-dimensional sphere such
that the corresponding geodesic flow admits homogeneous integrals of third and
fourth degree that cannot be reduced to linear or quadratic integrals. The reader is
challenged to find an example. This is an interesting and enlightening problem. Let
us consider the Hamiltonian function on T*S” (n > 1) of the form 7' + V', where
T is the standard Riemannian metric on the standard n-dimensional sphere and V'
is an analytic function on S”.

d. Is it possible for this system to possess a complete “irreducible” set of integrals
of arbitrary high order in momentum?

Probably, as a first step, the case when S” is the standard sphere in R"*! should
be considered. Note that in the integrable Neumann problem (¥ is quadratic on
R"), all integrals are quadratic in velocity.

3. Integrals are the simplest tensor invariants {type (0, 0)). The next class (in
simplicity) of tensor invariants are invariants of type (1, 0), i.e., symmetry fields.
A symmetry field is a vector field u commuting with the field v that defines the
dynamical system.

For Hamiltonian systems the problem of symmetry fields includes the problem of
integrals. The reason is that to any function F on the phase space there corresponds
a Hamiltonian vector field vy. If F is an integral, then # = vy is a symmetry field.

In the paper [8] it is proved that a reversible analytic system with a surface of
genus greater than one as the configuration space admits no nontrivial symmetry
fields: any symmetry field is of the form u = Avy, where 2 is an analytic function
of the Hamiltonian H. It follows that there are no analytic integrals independent
of H (cf. §3). The field Avy is Hamiltonian: the Hamiltonian function is

/ A(H)dH.

a. Is it true that if there exists a nontrivial symmetry field, then Hamiltonian
equations admit an integral independent of H?

Since a reversible system is homogeneous, we should look for symmetry fields of
the form

0 7] 7] 0
b= O g T g, TP g T P2y

where Q, (P;) are homogeneous polynomialsin p, p> of degree k — 1 (respectively
k). Tt is natural to say that a field is homogeneous of degree k if its Lie operator is
of the above form (if F is a homogeneous polynomial in impulses of degree k, then
the field vy is homogeneous of degree k).

Recently, Denisova obtained a positive answer to problem a in the case & < 2.

b. Investigate problem a, replacing the two-dimensional torus with the two-
dimensional sphere.

¢. Find conditions for the existence of nontrivial symmetry fields for nonreversible
systems (with gyroscopic forces) with two degrees of freedom.

Topological restrictions for the existence of first integrals of nonreversible systems
were obtained by Bolotin [9].
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4. Every Hamiltonian system with two degrees of freedom has the tensor in-
variants H, o, w? = w A w. Here H is the Hamiltonian function and w =
dpy A dq + dp; A dg is the symplectic form. The invariance of the form w? is
equivalent to the Liouville theorem on the conservation of phase volume. The
tensor fields (8) are of the type (0, 0), (0, 2), and (0, 4) respectively.

Describe all analytic tensor invariants of geodesic flows on surfaces with negative
Euler characteristics.

It is possible that there are no other nontrivial invariants.

5. In applications we often encounter differential equations with quadratic right-
hand side:

(9) Cxi=uwlx), 1<i<n, v(ix) = Ao(x).

The most important example is the Euler—Poincaré equations on Lie algebras:

(10) iy :Zc;{imiwi, my :ZI.\‘pwp~

Here w = (wy, ... zwn) is the velocity of the the system, m = (my, ..., m,)
is the momentum, ¢}, are the structure constants of the algebra, and ||/, || is the
constant inertial tensor. If we substitute the expressions for m; in terms of w; into
equations (10), we obtain a system of equations on the Lie algebra. The inverse
transformation yields a dynamical system on the dual space. In both cases we get
equations of type (9).

Kovalevskaya and Lyapunov introduced a method yielding necessary conditions
for solutions to be univalent or meromorphic on the complex time plane. We shall
describe it briefly for systems of type (9). The first step is to find a solution of the
form

(11) x =c/t.

The complex vector c¢ satisfies the algebraic equation v(c) = —c. Let us write out
the first variation equation for the solution (11):

E=17'48, A= (8v/dx)(c).

This is a Fuchsian system. It has particular solutions of the form ¢ = ¢¢”~!, where
p is an eigenvalue and ¢ an eigenvector of the matrix K = 4 + E. This matrix
is called Kovalevskaya matrix, and its eigenvalues are Kovalevskaya exponents. It
can be proved that if the general solution of system (9) is represented by univalent
(respectively meromorphic) functions of complex time, then the Kovalevskaya ex-
ponents are integers (respectively nonnegative integers except one, which is equal
to —1).

Toshida proved in 1983 that if f(x) is a homogeneous integral of the system (9)
and df (c) # 0, then p = m is a Kovalevskaya exponent. This result establishes a
remarkable connection between the univalence property of the general solution and
existence of nonconstant integrals. An extension of Ioshida’s theorem to the case
of tensor invariants with homogeneous components appears in [10].
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a. Apply the Kovalevskaya—Lyapunov method to the Euler—Poincaré equations.

Conditions for the general solution to be univalent or meromorphic will include
restrictions on the structure of the Lie algebra and on the inertia tensor. For certain
Lie algebras (for example, so (4)) this method was applied in the work of Adler and
van Moerbeke (see, for example, [11]). It is possible to consider other simplified
versions of problem a. For example, one can try to find all algebras such that
solutions of the Euler-Poincaré equations are univalent for any choice of the inertia
tensor (one of these algebras is so (3)).

b. Apply the Kovalevskaya—Lyapunov method to the Euler—Poincaré—Suslov equa-
tions.

The EPS-equations appear, for example, in the article by Fedorov and the author
in this volume. They also are of the form (9).

Now let us discuss some variational problems. The first belongs to the realm of
Morse theory.

6. Let M = N x S! be a Riemannian manifold diffeomorphic to the Cartesian
product of a compact manifold N and the circle S'. We look for closed geodesics
that are homotopic to the curves n x .S, where n is a pointin N.

Find a lower bound for the number of these geodesics in terms of topological
invariants of the surface N.

Probably this lower bound is at least cat (N). The category of the manifold N is
defined as the smallest number of closed subsets of N retractable to a point, that
cover N. For example, cat T¥ = k + 1. The category of N provides a lower bound
for the number of critical points of a smooth function on N.

An example from dynamics is provided by the problem of periodic oscillations
of an n-link pendulum. The configuration space M is the n-dimensional torus
T”. According to the Maupertuis principle, for fixed energy 4 greater then the
maximum of the potential energy (when all the rods are pulled up), trajectories of
the pendulum are geodesics in M. In this case, for a given / there exist at least n
different periodic motions of energy 4 in any homotopy class. This means that each
link makes the prescribed number of rotations in a period.

7. Let M be the configuration space, T the kinetic energy, V': M — R the
potential energy. The equations of motion have the energy integral 7 + V' = A.
Since T > 0, trajectories with energy 4 are contained in the region of possible motion

T, ={xeM:V(x)<h}.

We assume that X is compact, its boundary 8% is nonempty, and 9% contains no
positions of equilibrium. The latter is equivalent to the assumption that / is not a
critical value of the function V.

According to the Maupertuis principle, trajectories of energy / contained in the
interior of T are geodesics in the Jacobi metric (A — V) T'. This metric is degenerate
on the boundary 0Z.

There are two types of periodic orbits with energy h: rotations and librations.
Trajectories of rotations have no points on the boundary. For the trajectory of a
libration there are exactly two such points. The velocity periodically become zero
(as for librations of the ordinary pendulum).
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Bolotin proved that if these assumptions are satisfied, there exists at least one
libration [12]. Much earlier (1948) this result was proved by the well-known topol-
ogist Herbert Seifert for the case when X is diffeomorphic to the ball. He stated
the following conjecture: if X is diffeomorphic to the n-dimensional ball, then there
exist at least n different librations. This conjecture is not proved yet. It is easy to
give an example where there exist exactly » librations (try!).

Let X = I x N, where / is the segment [0, 1] and N is a closed manifold.

The problem is to find a lower estimate for the number of librations in terms of
topological invariants of the surface N. Is it true that in this case there are at least
two librations?

For a start, one may consider the simplest case of the two-dimensional annulus,
when N = S'. In [13] the number of librations was estimated for the not simply
connected case by the rank of the fundamental group of the space £/0X.

8. In a paper written when he was still a student, Chaplygin (1890) studied the
motion of a heavy plate in a boundless ideal fluid. He obtained the elegant equation

(12) % =t*sinx.

The coordinate x is the double rotation angle of the plate and ¢ is a parameter
proportional to physical time. Later we shall discuss some properties of generic
solutions of equation (12). Here we consider special doubly asymptotic solutions
x(t) that tend to the unstable equilibrium x = 0 mod 2r as t — +o0.

It is relatively easy to prove the existence of a doubly asymptotic solution x ()
that performs exactly one full rotation:

(13) lim x(z) - lim x(¢)=2n.

1—+oc t——0o0

This result was obtained in [14] by means of the Hamilton variational principle.
Bolotin showed that it is possible to modify the proof in [14] and to prove the
existence of a doubly asymptotic solution such that the difference (13) is equal to
2nn with arbitrary integer ».

It is possible to generalize equation (12). Let M be a compact configuration
space, T the kinetic energy, and p(r)V the potential energy. Here V is a smooth
function on M that has a strict nondegenerate maximum ata € M and p(-)isa
nonnegative function of time. Suppose that p(¢) is monotone for |¢f| > const and
tends to infinity as + — +o0o. In the local coordinates x,, ..., x, the motion is
described by the Lagrange equations

aor ot o ov
dt 9x; 8)(,‘ =P 6x,- ’ S

N
3

It 1s clear that x = « is an unstable equilibrium,

The question is, does there exist a nontrivial solution x(t), such that x(t) — a as
t — +00? Probably the number of these solutions is always infinite.

Note that for the ordinary pendulum (when there is no multiplier ¢> in (13)),
there exist only two different doubly asymptotic trajectories (they correspond to
rotation numbers n = +1).
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9. Now let us discuss some questions connected with the existence of periodic
orbits for nonreversible systems. Again let M be the configuration space, w a closed
2-form on M, and V the potential energy. In the nonreversible case, the equations
of motion are:

(14) dor _or _ i -9
Ox

It is natural to interpret the term w(x, -) as an additional force acting on
the mechanical system. Since it does not prevent the conservation of full energy
T + V = h, it is usually called a gyroscopic force. Hence the 2-form o is said to
be the form of gyroscopic forces. The nature of these forces can be quite diverse.
For example, they appear when we use a rotating frame of reference, after the
reduction of systems with symmetries, or when we study the motion of a charged
particle in a magnetic field. The assumption that the form e is closed implies that
locally solutions of equation (14) are extremals of the variational problem with the
Lagrangian L =T — ¢ — V,dyp = w.

Suppose that M is compact and 4 > max,, V. Then the velocity of the system
i never zero.

The question is: does there exist a periodic motion with fixed energy h > max V'?

S. P. Novikov formulated sufficient conditions. For example, it is sufficient to
assume that M is simply connected and H>(M) # 0 (see the survey [15], where
there are references to preceding publications). The case of two-dimensional sphere
M = S?, important for applications, is included here.

However, full and rigorous proofs of these results are unknown as of now. In
the recent paper [16], Taimanov proved the existence of a closed orbit on the two-
dimensional sphere under the additional assumption that the isoenergetic action

functional
F*:/ \/2(h~V)T—//w
an n

assumes a negative value on some two-dimensional surface IT (with boundary),
imbedded into M. The orientation of I1 is induced by the orientation of M. This
assumption is satisfied if the 2-form w changes sign somewhere on the sphere. An
analogous result is announced in [16] for all two-dimensional closed surfaces M.
Earlier in [17] the opposite case was considered, when the form of gyroscopic forces
does not vanish anywhere on the two-dimensional torus. This case is one of the most
interesting for physical applications. Using the generalization of the last geometric
theorem of Poincaré suggested by Arnold, the existence of three different closed
orbits for the inertial motion of a particle on a flat torus (the curvature of the
Riemannian metric is zero), was proved [17].

a. It is interesting to extend this method to the case of an arbitrary metric on the
two-dimensional torus.

Suppose now that 4 < maxy, V and 4 is a regular value of the potential energy.

b. Does a periodic trajectory with a given energy h always exist?

This problem seems more difficult then the problem considered by Novikov.

10. Once again consider the motion on a compact manifold M under the action
of a potential force field. Let « , b be different points of M.
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The question is, does there exist an orbit with energy h, joining these points?

If A > max,, V, the positive answer is well known (it follows from the Maupertuis
principle and the Hopf-Rinov theorem in Riemannian geometry). If A < maxys V,
for arbitrary points in the connected region of possible motion

T, ={xeM:V(x)<h},

the answer is negative (give an example!).

Suppose that ¥ has no critical points on the boundary of Z;. Then it is easy
to show that any two points @, b € X can be joined by a piecewise smooth broken
trajectory (each link is a trajectory of energy /). In other words, it is possible to get
from the point a to the point & by applying a finite number of isoenergetic impulses.
Hence our problem is connected with control theory.

Let k(a , b) be the least possible number of impulses needed for getting from the
position a to the position b. By reversibility, k(a , b) = k(b, a). It turns out that
K = max, pexk(a, b) is finite. This is an important geometric characteristic of
the system. Of course, it depends on the energy 4.

We have the maximum principle:

K = max k(a,b).
a,bedz
This a simple corollary of the boundary hit theorem (see [17]): for every pointa € X
there exists a motion x(z), 0 < ¢ < 7, such that x(0) € % and x(7) = a.
a. Obtain upper and lower estimates for K . Is it true that always K < 27
Let us make the problem more complicated by adding a linear nonintegrable
constraint :

(15) (c(x),x)=0, c#0.

The equations of motion are replaced by the nonholonomic equations with a mul-
tiplier A:
dor or _ v

e 99 .
(16) dtox  ox  ax ¢
Equations (15), (16) form a complete system. Once again the energy 7' + V' is
constant on every solution.

b. Is the boundary hit theorem true in the case of a nonintegrable constraint (15)?

For the nonholonomic problem it is also possible to introduce the number K.
Once again it is finite. This fact is less evident than in the holonomic case. The proof
uses the Rashevskii-Chow theorem (every two points of a connected manifold M
can be joined by an admissible curve satisfying equation (15)). The reader can try
to prove that K is finite himself.

c. Is the maximum principle true in the nonholonomic case?

Note that the Hopf-Rinov theorem does not hold in the presence of a non-
integrable constraint (try to find an example). The reason is that solutions of the
nonholonomic equations in general cannot be described as extremals of any smooth
functional.

Now let us discuss some problems of celestial mechanics.
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11. It is well known that equations of the famous restricted circular three-body
problem in suitable units for length, time, and mass, are as follows

% =2j+0W/0x, . j=—2%+0W/dy,
(17) W= (x*+y)/2+ (0 —u)/pi+u/p2,
pl=(x+u?+yt,  pl=(x+p)l+)~

Here x, y are coordinates of the asteroid in the rotating coordinate system, and u is
the ratio of the masses of Jupiter and the Sun (0 < # < 1/2). Equations (17) have
the Jacobi integral

(x> +3%)/2 — W = h = const .

For a fixed value of 4, motion takes place in the region of admissible motions
X ={x,y:—W < h},

called the Hill region in celestial mechanics. Its geometry is well known from analytic
and numerical investigations. Since equations (17) are nonreversible, the boundary
hit theorem is no longer true (see §11). Define the set K}, as the closure of the union
of trajectories that start at the boundary of the Hill region.

a. It is interesting to study numerically the structure of the set K,, for different
values of h.

The boundary of K, includes envelopes for the family of trajectories starting
on J%,. For integrable nonreversible systems K usually differs from . Since the
three-body problem is nonintegrable, it is natural to ask the following question.

b. Is it possible that for the restricted three-body problem we have K, = X, for
some h?

12. Consider another variant of the spatial three-body problem, in which two
points of equal masses move in the x, y plane along elliptic orbits that are sym-
metric with respect to z-axis while the third point of zero mass lies always on this
axis. The motion of the third point is governed by the differential equation 7 =
—z[z% 4+ r2(¢)]73/?, where

r(t) = (1 +ecosp(t))!, @ =(l+ecosp)?, (0)=0.

This problem was suggested by Kolmogorov in order to verify the Chazy con-
jecture on the existence of oscillating motions in the three-body problem. Alekseev
[18] established the quasirandom character of oscillations for equation (18) if the
amplitude is sufficiently large. In particular, there exist infinitely many long-periodic
unstable motions.

If the eccentricity e of elliptic orbits of massive bodies is zero, equation (18)
is autonomous and hence integrable. For negative values of energy the phase
trajectories are closed curves. Thus it is possible to introduce the action-angle
variables and for small e consider the Kolmogorov problem as a perturbation of a
completely integrable system.

The perturbed system is nonintegrable and satisfies the assumptions of the well-
known Poincaré theorem, i.e., the criterion for the existence of nondegenerate long-
periodic orbits. For each sufficiently large integer n and small e equation (18) has a
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pair of nondegenerate periodic solutions. One of them is elliptic (the first variation
equation is stable) and the other hyperbolic (unstable).

Poincaré periodic solutions depend on two parameters: continuous e and discrete
n. The question arises about the behavior df these solutions when we increase e.

Is it true that if e increases up to the limit ~ 1/n, the multiplicators 2, 2~ of
the Poincaré periodic solution, starting from the point A = A~' = 1 fore = 0, in
the hyperbolic case move in the opposite directions along the real axes, and in the
elliptic case revolve along the unit circle on the complex plane until the collision at the
point A = A~ = —1, and then move in the opposite directions along the negative real
half-axes?

This conjecture is based on the result of Dovbysh [19] about the behavior of
Poincaré periodic solutions near the split separatrices when the small parameter is
increased. If the answer is positive, it will provide a connection between the Poincaré
and Alekseev periodic solutions.

13. The potential of the gravitational interaction has two fundamental proper-
ties. On one hand, it is a harmonic function on the three-dimensional space (i.e.,
satisfies the Laplace equation), and on the other hand only this potential (and the
potential of an elastic spring) generates the central field where all bounded orbits
are closed (Bertrand theorem). It appears that in the more general situation of
motion in a constant curvature space these properties remain true [20].

As a matter of convenience, we shall consider motion on the three-dimensional
sphere with unit radius. Let a particle m of unit mass move in the force field with
potential ¥ depending only on the distance between the particle and some fixed
point M. Let ¥ be the length of the arc of the great circle connecting m and M
(¥ is measured in radians). Then the function ¥ depends only on 9. The Laplace
equation is replaced by the Laplace—Beltrami equation:

AV:sin*zﬂ%(sinzﬁ%> =0.

Its solution is
(19) V=—ytan ' 9+ a, o,y = const .

The constant « is irrelevant. The parameter y plays the role of the gravitational
constant.
The dual potential is

(20) V = (k/2)tan* ¥, k = const .

This is the analog of the potential of an elastic string. It appears that all orbits in
central fields with the potentials (19) and (20) are closed.

This discussion leads to the natural generalization of the n-body problem: » par-
ticles move in the three-dimensional constant curvature space and their interaction
is governed by the potential (19). The two-body problem is especially interesting.
Contrary to the plane case, it cannot be reduced to the generalized Kepler problem.

a. Are the bounded orbits of the generalized two-body problem closed?
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b. Is the analog of the Sundman theorem (on expansion of solutions in convergent
series for all t) true for the generalized three-body problem?

The main difficulty is to exclude triple collisions. In the flat case it is sufficient
to assume that the angular momentum of gravitating particles with respect to their
center of mass does not vanish.

Concluding the discussion of this topic, consider a Hamiltonian system with two
degrees of freedom and the following Hamilton function:

A(ql s 42) 2 2 f(ql , q2)
(21) H=""2"2(pi+p5) - 21
2 1 2 ,_—qlz—#q%

Here A and f are positive analytic functions. We already mentioned that locally
the kinetic energy always can be transformed to the given form. Coordinates ¢,
4> are isotermic coordinates. The potential in the Hamiltonian (21) is said to be a
Newtonian-type potential.

¢. Find all functions A and f such that all bounded orbits of the system with the
Hamiltonian function (21) are closed.

This is a generalization of the Bertrand problem. Are there any solutions except
the constant curvature metric and the potential of type (19)?

In conclusion let us formulate two separate problems.

14. Let us return to the nonlinear Chaplygin equation (12). In [14] it is proved
that for almost all initial conditions the solutions tend to the stable equilibrium (to
the point x = 7 mod 2x) as t — oco. These solutions have the asymptotics

(22)

x(t) :n+2nn++a— !

2 2
ﬁsin%+%cos%+0(ﬁ), n, €Z, a,,b, eR.
a. Isit true that the numbersn, a., b., define the solution of the Chaplygin equation?

If we replace ¢ by —¢, the equation (12) does not change. Hence for almost
all solutions, we have an asymptotic representation of type (22) as 1 — —oo (the
numbers n,, a,, b, must be replacedby n_, a_, b_).

b. Study the properties of the correspondence S, (a_,b_) — (a, , b,).

This nonlinear scattering problem depends on the discrete parameter n = n, —
n_, which is the number of half-rotations of the falling plate while ¢ changes from
—00 to +00.

The map S is not determined for some solutions. Among them are the doubly
asymptotic solutions considered in §9. The simplest is the solution x,(¢) satisfying

the condition
0 ast— —oo,

x,(1) = {

Asymptotically, as t — —oo and t — +o0, a certain point of the plate descends
along vertical lines. The distance between these lines is given, up to a constant
coeflicient, by the integral

2r ast — 400.

toc
I :/ tsinx,(t)dr.

o
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It is easy to see that the integral is convergent.

c. Is it possible to express I in terms of known mathematical constants?

This problem can be generalized to the case when the solution x,(¢) is replaced
by one of the infinite sequence of solutions considered in §9.

15. Let us recall that a dynamical system
(23) x = wv(x)

is called Hamiltonian if there exist a closed nondegenerate 2-form w and a function
H(x) such that w(v, -) = —dH. In local canonical coordinates p, g such that
o = 3 dp A dq, equation (23) takes the usual form

(24) p=—-0F/oq, g =0F/0p.

Here F is the function H expressed in the coordinates p, ¢. The form w is called
the symplectic structure, and H is the Hamilton function.

It follows that in order to find out whether or not a given dynamical system is
Hamiltonian, we need to search for two objects: the symplectic structure and the
Hamiltonian. If the system does not have the form (24), this does not mean that it
is not Hamiltonian: it might just be represented in noncanonical variables.

Let us give a simple example demonstrating a hidden Hamiltonian structure.
Consider a linear system with constant coefficients

(25) % = Ax,

admitting a quadratic integral f = (Bx, x)/2. It turns out that if the matrices
A and B are nondegenerate, the system (25) is Hamiltonian. The Hamiltonian
function is the integral f. The reader can verify this by producing a suitable
symplectic structure.

The problem of recognizing the Hamiltonian nature of a dynamical system is
a difficult and, probably, unsolvable problem. It makes sense to consider it for
dynamical systems from particular classes. One of the approaches is to consider
systems that are close to completely integrable systems:

(26) I =eF(I,0)+..., pi=0;I)+eGI, @) +...,

1<i,j<n Herel =(I, ..., I,) are the slow variables and ¢ = @1y o)
are the fast angle variables. The functions F;, G;, ... are 2n-periodicin g1, ...,
¢n. Dots mean terms of order €2, where ¢ is a small parameter. Equations like
(26) are often encountered in applications. Of course, it also makes sense to study
systems with different numbers of fast and slow variables.
Let us consider the most important case when, for ¢ = 0, system (26) is nonde-
generate:
8(601, ey a),,)
o, ..., 1,

When it is possible to find o and H in the form of series in €

£0.

we =wo+ew+ ..., H.=Hy+eH +...,
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with 2n-periodic in ¢ coefficients, such that the Hamiltonian condition o, (v, , +)
= —dH., is satisfied? Here v, is the vector field defined by system (26).

The idea of this problem goes back to Poincaré who was the first to consider
the problem of existence of “univalued” (periodic in the angles ) integrals for
Hamiltonian equations of type (26), which are represented in the form of power
series in €. This problem is closely related to the so called small denominators
problem, first encountered in celestial mechanics. Related problems of the existence
of integral invariants and symmetry fields in the form of power series in ¢ for systems
of type (26) were considered in [21] and [22]. In the symmetry fields problem, small
denominators also play the central role.
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