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ABSTRACT. Conditions are found for the existence of integral invariants of Hamiltonian systems. For two~ 
degrees-of-freedom systems these conditions are intimately related to the existence of nontrivial symmetry fields 
and multivalued integrals. Any integral invariant of a geodesic flow on an analytic surface of genus greater than 
1 is shown to be a constant.multiple of the Poinear6-Cartan invariant. Poincar~'s conjecture that there are no 
additional integral invariants in the restricted three-body problem is proved. 

w I n t r o d u c t i o n  

The general theory of integral invariants was developed by H. Poincar6 and presented  in his work [1]. 
Several important  complements are due to E. Cartan [2]. Let us recall the basic definitions. 

Let 
= v(x) ,  z E M n, (1.1) 

be a smooth dynamical system on a manifold M .  The Lie derivative along the vector field v will be 
denoted by s  By the homotopy formula, 

s  = di ,  + ivd. 

Let ~ be a k-form, 7 a k-chain, and g$ the phase flow of system (1.1). Then [3, Chap.  VII] 

d 

Thus, if 
/ : ~  ---- 0, (1.2) 

then the integral 

•  (1.3) 

is an absolute integral invarian~ of system (1.1): 

z[g'(~)] = I[~] v t e  R. (1.4) 

If 
s  = d e ,  (1.5) 

where r is a (k - 1)-form, then Eq. (1.4) holds for any k-cycle 3', 07 = 0. In this case the integral (1.3) 
is called a relative integral invariant. 

Some cases of interest are beyond the scope of Poincar6's classification of integral invariants into absolute 
and relative ones. For example, if 

L ~  = r de = 0, (1.6) 

where the k-form ~b is not exact, then Eq. (1.4) holds for any k-cycle homologous to zero. The  corre- 
sponding integral invariant will be referred to as conditional. 
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Let us give a simple example of integral invariant that is conditional but not relative (k = 1 in our 
example). Let 

M 2 = T x l l { =  {qmod2~r,p},  q = 0 ,  i b = l ;  ~ = p d q .  

Then 
s  = i~d~ = dq. 

The form ~b = dq is closed but not exact, and so ~/[gt(7)] = 2~r for any closed contour 7 that  goes around 
the cylinder M (say, 7 = {0 _< q < 2~r, p = 0}). 

Let a k-form ~ generate a conditional or a relative integral invariant. Then the (k + 1)-form d~ 
obviously generates an absolute invariant. 

Indeed, 
l:,,dqo = ds = d~b = O. 

This observation is actually due to Poincard [1, item 238]. 
Now let M 2" = T * N  '~ be the phase space of a Hamiltonian system with configuration space N n = {z}. 

We introduce the canonical momenta  y E T i N  and the 1-form 

n 

~o = ydx = ~ ykdxk. 
1 

According to Poincard [1, item 255], the Hamilton equations 

OH OH 
:~k = Oyk '  Yk = --Oxk ' 1 < k < n, (1.7) 

admit only the linear relative invariant 

f  ykaxk, (1.8) 

It is interesting that  the invariant (1.8) is independent of the Hamiltonian H in Eqs. (1.7). That  is 
why the integral (1.8) is sometimes referred to as the universal integral invariant. Hwa-Chung-Lee [4] 
proved that each linear integral invariant of the Hamilton equations is a constant multiple of the Poincarfi 
invariant (1.8). However, this result is formal; the proof is based on studying the invariance of the 
integral of the same 1-form ~ with respect to the phase flows of Hamiltonian systems with various specific 
Hamiltonians. 

We should point out that Hwa-Chung-Lee's theorem is proved for the case M = tR '~ and is no longer 
valid if the first Betti number  of M is not zero. In the latter case, one can add a closed nonexact 1-form 
to qo, thus modifying the value of the integral (1.8) on cycles nonhomologous to zero by some additive 
constants. In general, Hwa-Chung-Lee's theorem is only valid for relative integral invariants. 

Poincard posed the problem whether the equations of dynamics (in particular, in the three-body prob- 
lem) have other integral invariants. In [1, item 257] he wrote: "One could ask if there exist algebraic 
integral invariants other than those constructed in the preceding . . .  We might apply either Broonce's 
method or the one I used in Chaps. IV and V . . . .  " 

Poincar& realized that  this problem is closely related to the integrability conditions for the Hamilton 
equations. That  is why he referred to Chap. V, where he proved a theorem saying that there are no single- 
valued analytic integrals for a generic perturbation of the Hamiltonian. Let us show that a completely 
integrable system actually admits several distinct integral invariants in the vicinity of an invariant torus. 
In the action-angle variables ( J ,  ~0 mod 2~') the Hamilton equations read 

J,  . . . . .  J ,  = O, ~ ,  = , , , ~ , . . . ,  ~ ,  = ,,,,,, (1.9) 

where each wk is a function of J .  Let us consider the nondegenerate case, in which 

O ( J 1 ,  . . . ,  ,In) # O, 
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Then system (1.9) can be represented in vari,ms nonequivalent Hamiltonian forms following [5]. One takes 
the symplectic structure 

w = dqo, ha = ~wk- d~Pk, 
1 

and the Hamiltonian function 
OK 

1 

- -  " ~ g ,  

where K is a nondegenerate function of the frequencies Wl, . . . ,  w~, 

det 02 K r 

The various Hamiltonian representations of system (1.9) are numbered by the funct ions K ( w ) .  Hence, by 
the Poincard theorem, system (1.9) admits the integral invariants 

Poincard tried to find a relationship between the new integral invariants and the proper t ies  of multipliers 
of periodic solutions to the Hamilton equations. He showed [1, item 259] that if there a re  p distinct integral 
invariants (with the corresponding 1-forms ~o linearly independent) and if the coefficients of the forms 
are linear in the canonical variables (as is the case in Eq. (1.8)), then p multipliers are equal to 1. 
Unfortunately, Poincar~ did not obtain definitive results in the general case. He wrote :  "The three-body 
problem is likely to admit no invariant algebraic relations other than those already known.  However, I am 
not able to prove this yet" [1, item 258]. 

Our aim is to prove Poincarg's conjecture for some simplified versions of the th ree-body  problem. 

w Perturbation theory and integral invariants 

Poincard's idea. that  the problem about integral invariants is related to the p rob lem of small denom- 
inators [1, item 257] was developed in [6], where the following system with a smal l  parameter  e was 
considered: 

= u 0 + e u l + " "  , y = v 0 + e V l + " "  , ~ = r  (2.1) 

The right-hand sides of these equations are power series in r whose coefficients are analyt ic  in x, y,  and 
z and 2~r-periodic in x and y. One can assume that the coefficients are defined and analytic on the 
direct product A •  2 ,whe re  • is an interval in ll~= {z} and T 2 = { x , y m o d 2 x } .  It is assumed that 
the functions u0 and v0 depend only on z. Then for r = 0 the system is complete ly  integrable; the 
level surfaces of the integral z = const are two-dimensional tori with conditionally periodic trajectories. 
Systems of the form (2.1) occur very frequently in the theory of nonlinear vibrat ions (e.g., see [7]). 

The author [6] studied the existence of a relative integral inwariant 

(2.2) 

of system (2.1). Here the coefficients of the 1-form We are single-valued analytic funct ions  on A • T 2 and 
depend on e analytically. Needless to say, the trivial case 

d~,  = 0, (2.3) 

in which the integral (2.2) vanishes identically by the Stokes theorem, must be excluded from our consid- 
erations. 
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Let us expand the function wl in the double Fourier series 

wl : E l,I%n(z)exp[i(mx + ny)]. 

Consider the set P C ~ of points z such that  

(1) muo(z) + nvo(z) = 0 for some integers m and n that  are not zero simultaneously; 
(2) w., .(z) r 0. 

Such sets were originally considered by Poincar~ in connection with the integrability problem for the 
Hamilton equations [1, Chap. V]. 

Theorem 1 [6]. Suppose that 

(A) the set P has an accumulation point z. in A; 
(B) u~v0 - u0v~l.. # 0; 
(c)  w00(z) ~ o. 

Then system (2.1) does not have any nontrivial integral invariants of the form (2.2). 

Condition (B) means that  the nonper turbed system (e = 0) is nondegenerate,  that  is, the frequency 
ratio uo/vo is not constant.  Furthermore,  it follows from (B) that  for z = z. and e = 0 the right-hand 
sides in system (2.1) are different from zero. Conditions (A) and (B) together guarantee that  there are no 
nonconstant analytic integrals and nontrivial symmetry fields analytic in e [6]. 

One can try to apply Theorem 1 to Hamiltonian systems close t o  completely integrable systems. Specif- 
ically, we speak of two-degrees-of-freedom systems whose order is reduced by one by means of the energy 
integral. The application of the Whit taker  method to the reduced system results in a nonautonomous 
Hamiltonian system with time-periodic Hamiltonian [8, Chap. 1]. 

Thus, let us consider the Hamilton equations 

OH OH 
=1,  ~1- Oz'  ~ -  Oy' H ~ = g o ( z ) + ~ H ~ ( x , y , z ) + . . . .  (2.4) 

Here (y mod 27r, z) are the canonical action-angle variables of the nonper turbed system and the function 
H is 2zr-periodic in "time" x = t.  

For system (2.4) we have 

OHo OH1 
(2.5) U 0 : 1 ,  "U0 - -  0 Z  ' W l  - -  - -  O y  

Consequently, condit ion (B) is equivalent to the nondegeneracy condition 

d2H0 
dz 2 ~ 0 

for the nonper turbed  Hamiltonian.  The  set P obviously coincides with the set 

(2.6) 

dHo n Hmn ~ 0} (2.7) 
z E A :  d---z-- m '  

where H,~n are the Fourier coefficients of the perturbat ion H1. It follows from (2.5) that  condition (C) 
never holds for Hamil tonian systems (Woo -= 0), which is by no means surprising since system (2.4) has 
the Poincar r -Car tan  integral invariant 

f z H, dx. (2.8) dy 

Clearly, this invariant is nontrivial ( the degeneracy condition (2.5) is violated). 
Let us indicate conditions sufficient for the nonexistence of a second integral invariant. To this end, we 

need the following lemma. 
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L e m m a  1 [6]. Let conditions (A) and (B) of Theorem 1 be satisfied. TLe:. there exists a function 

A, = A0( ) + + . . . ,  

such that 

d~oe = i~(A~a), (2.9) 

where v~ is the vector t~eld (2.1) and ~ = dx A dy A d z .  

Let us show how the conclusion of Theorem I can be derived from this lemma. To this end, we integrate 
the 2-forms on both sides of Eq. (2.9) over the two-dimensional torus z -- const. By the Stokes theorem, 
the integral of d~o is zero, whereas the integral on the right-hand side is equal to A~W00 + o(e). From 
condition (C) we obtain A~ = 0. Hence, Eq. (2.9) coincides with the degeneracy condit ion (2.3). 

L e m m a  2. If  Eq. (2.9) holds, then the 3-form An generates an absolute integral invariant of  sys- 
tem (2.1). 

Indeed, 
0 = dd~ = d~,(An) = d i , (An)  + i , d (A a )  = [ , ( A ~ ) .  [] 

L e m m a  3. Suppose that system (2.1) has one more absolute invariant generated by a 3-form A'~ 
with A' ~ O. Then the ratio A/A' is an integral of  system (2.1). 

Set s = p ~ .  Then, by the Leibniz rule, 

Since ~ r 0, it follows that 
i + pA = 0. (2.10) 

Similarly, 
A' + #k' = O. (2.11) 

Consequently, 

by virtue of (2.10) and (2.11), as desired. [] 

The phase flow of the Hamilton equations (2.4) is known to preserve the "s tandard" volume 3-form ~ .  
Furthermore, the energy-momentum 1-form in (2.8) satisfies (2.9) with Ae = 1. 

T h e o r e m  2. Let condition (2.5) be satisfied, and let the set (2.7) have an accumulat ion point in the 
intervM A .  Then any conditional integral invariant (2.2) of the Hamiltonian sys tem (2.4) is the product 
of the Poincard-Cartan integral invariant (2.8) by a constant factor c~. 

P r o o f .  Suppose that we are given an integral invariant of the form (2.2) of sys tem (2.4). Since condi- 
tions (A) and (B) of Theorem 1 are satisfied, it follows that Eq. (2.9) is valid. Note tha t  s = 0 ; then, 
by Lemmas 2 and 3, the factor A~ in (2.9) is an integral of system (2.4). However, unde r  the conditions 
of Theorem 2, Ae = ce -- const [8, Chap. 1]. Hence, 

d ~  = c~d(zdy - H e d x ) .  

It follows that the values taken by the integrals (2.2) and (2.8) on cocycles homologous to zero differ by 
the factor c~. [] 
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R e m a r k .  Suppose that  

i) U~oVo - UoV~o 9s O, 
2) P is everywhere dense in A 
3) system (2.1) admits a nontrivial invaria~t (2.2). 

Then it can be shown that  any other conditional integral invariant of system (2.1) is a constant multiple 
of (2.2) and that the proportionality factor is analytic in e. 

Theorem 2 can be applied to the planar circular restricted three-body problem. Here the small param- 
eter e is the ratio of the mass of Jupiter to that of the Sun. In the rotating frame of reference in which the 
Sun and Jupiter are at rest, the dynamics of a third body (asteroid) of negligibly small mass is described 
by the Hamilton equations [9] 

O H  OH 
(~k = --ODk ' Pk = --Oqk k =  1,2, 

1 
H = H 0 + e H z + . . -  , H 0 -  z i"p~ P2- 

(2.12) 

The double Fourier series expansion of the perturbing function, found by Leverrier, has the form 

cos [uqz - v(ql  -F q2)], 

where the coefficients h,,,, depend on pl and p2 and are nonzero in general. 
By taking the angular variable q2 as the new "time" and by applying Whittaker 's  order-reducing 

procedure, we arrive at Hamilton equations of the form (2.4) with 

1 
H o ( z ) -  z2.  

Thus, condition (2.6) is automatically satisfied. It can be shown that the set P is necessarily everywhere 
dense on the semiaxis z > 0. We see that the reduced Hamilton equations for the restricted three-body 
problem do not have new relative integral invariants analytic in the parameter e and independent of the 
Poincar6-Cartan integral invariant. 

w Integral invariants and symmetries 

Let us return to system (1.1), now assuming that /~I is a three-dimensional manifold and that v is 
a smooth vector field without critical points. Moreover, assume that system (1.1) admits an invariant 
volume form i~: 

s = 0. 

The volume form determines the canonical orientation of M.  If M is compact, then we can assume that 

/u l~ > O- 

In particular, 12 determines a smooth measure invariant with respect to system (1.1). 
The most important  example is given by Hamiltonian systems with two degrees of freedom. Here 11I 3 

is a connected component of a nonsingular level surface of the Hamiltonian, v is the restriction of the 
Hamiltonian field to M ,  and the volume form is Liouville's invariant 4-form (e.g., see [10] for details). 
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L e m m a  4 (Cartan [2, item 91]). Under the cited assumptions,  the 2-form 

q~ = i , f l  

is closed and generates an absolute  integral invariant of  sys tem (1.1). 

Indeed, 

d~  = d in~  = s - i~d~ = O, 

s  = s  = i ~ s  = O. 

Since the form (3.1) is closed, locally we have q' = dq0. But iucI ' = 0, and so 

s = i,,dqo + di,qo = d(i~p).  

(3.1) 

Consequently, the 1-form qo gives rise to a "local" relative integral invariant. 
If the cohomology class of the 2-form ff is zero, then the 1-form qo is globally well defined. This is 

necessarily the case if 

H 2 ( M ,  R) = O. (3.2) 

This argument is in fact contained in [2, item 91], but only for the special case 2r = R 3 . 
Throughout the sequel we assume that the theorem about the partition of unity is valid for M 3 . This 

is always the case if M 3 is a compact manifold. 

L e m m a  5. Let  t~ be a smoo th  2-form on M .  Then there exists a vector lqeld x ~-* u ( x )  such that 

= i,,~. (3.3) 

Indeed, let {Aa(x)} be a parti t ion of unity subordinate to some open cover of _M. We assume that 
coordinates can be introduced globally in each domain supp A~. Obviously, in the domain supp .~  the 
algebraic equation (3.3) with # replaced by A~I' has a unique smooth solution u~, such that 

supp uc, C supp Aa. 

It remains to set 

(3.4) 

Consequently, 

[] 

= E uo(x). 
ot 

R e m a r k .  In the analytic case the field u is obviously analytic. 

L e r n m a  6. Suppose  that  system (1.1) has a conditional integra/invariant ~r L e t  

d~o = i,,~. 

Then u is a s y m m e t r y  t]eld o f  sys tem (1.1), that  is, [u, v] = O . 

P r o o f .  By the definition of a conditional invariant, we h a v e / 2 ~  = r  with d e  ~ 0 

0 = ds = s = s  = (l:,~i,, - i , ,s  = i[~,,,]fi. 

Since the volume form is nondegenerate, it follows that the fields u and v commute .  
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R e m a r k .  Lemma 6 remains valid if we replace the form d~ in Eq. (3.4) by arty closed 2-form. In [11] 
we obtained conditions for the existence of nontrivial symmetry fields (the vectors u(x) and v(x) arc 
independent almost everywhere) of the Hamilton equations. 

Lemma 6 has important applications in Hamiltonian mechanics. By way of example, let us consider the 
geodesic flow on a closed two-dimensional surface 52. The flow is determined by speci~'ing a Riemannian 
metric. The geodesics on 52 are described by the Hamilton equations with Hamiltonian H that is the 
R.iemannian metric expressed via the canonical coordinates on T*~.  It is well known that for positive 
values of the total energy h the Hamiltonian systems on the three-dimensional isoenergetic surfaces 

{ x q T * ~ : H ( x ) = h }  (3.5) 

are isomorphic. One usually sets h = 1; the corresponding dynamical system is called the geodesic flow 
on E.  Obviously, the geodesic flow has a relati,ce Poincar4-Cartan integral invariant. 

T h e o r e m  3. Let ~ be an analytic surface of  genus > 1 equipped with an a~alytic Riemannian metric. 
I f  a conditional invariant of  the geodesic flow on ~ is determined by an analytic 1-form on the surface 
(3.5), then this invariant is proportional to the Poincar4-Caxtan invariant. 

P r o o f .  Let ~ be an invariant analytic volume 3-form on the surface (3.5). If the geodesic flow has a 
conditional integral invariant determined by an analytic 1-form ~v, then (by Lemma 6) one can find an 
analytic symmetry  field u. However, the geodesic flow on an analytic surface does not have nontrivial 
symmetries [12]: 

u = cv, c = const. 

Consequently, by (3.4), 
d~v = ci,,~. 

Hence, the conditional integral invariant in question is the Poincard-Cartan invariant times the constant 
factor c. [] 

In closing this section, let us indicate yet another application of the cited results to one of the restrictcd 
versions of the three-body problem. Let two heavy bodies of the same mass rotate about their center of 
mass in elliptic orbits with nonzero eccentricity, and let the third body of negligibly small mass permanently 
move along a line orthogonal to the plane of motion of the first two bodies (see [13] for details). This 
problem was suggested by A. N. Kolmogorov as a tool for verifying the possibility of combinations of final 
three-body motions in the Chasy classification. 

The dynamics of the third body is described by a nonautonomous Hamiltonian system of the form (2.4) 
with a periodic Hamiltonian. The extended phase space is the Cartesian product 

2" x R 2 = {z rood 2~', y, z}. 

Obviously, this system has the Poincar4-Cartan integral invariant (2.8). 
Kolmogorov's problem is not integrable: it does not admit nonconstant analytic integrals [13]. This is 

due to the quasistochastic behavior of the trajectories. In particular, there are infinitely many nondegen- 
crate long-period trajectories. As was shown in [11], nontrivial analytic symmetry fields are missing in this 
case: u = cv, c = const. By Lemma 6, the equations of this problem do not admit new conditional inte- 
gral invariants. Similarly, one can prove that new analytic integral invariants are missing on fixed energy 
manifolds with large negative energy in the planar circular restricted three-body problem. The necessary 
preliminary results concerning the structure of the set of long-periodic nondegenerate trajectories were 
established in [14] by methods of symbolic dynamics. 

w Higher -order  invariants 

In w167 2 mad 3 we dealt with the existence of linear integral invariants. Let us now study second-order 
conditional invaxiants 

f ~ ,  (4.1) 
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where D is a two-dimensional cycle in M 3 and r is a 2-form. The invaria:~ce condit ion for the integral 
(4.1) has the form 

s  = ~ ,  d~  = 0. (4.2) 

For relative invariants, k~ is exact, whereas ~ = 0 for absolute inva~'iants. 
Since the invariant volume 3-form fl is nondegenerate, it follows that  

dq = I n ,  f :  M 3 ~ R. (4.3) 

L a m i n a  7. The function f is an integral of  system (1.1) on M 3 . 

Indeed, from Eqs. (4.2) and (4.3) we obtain 

0 = dv~ = d/2,,~ = s  = s  = ( s  + f f , , ~  = ]f t .  

Consequently, ] = O. [] 
By Lemma 4, system (1.1) has the absolute invariant i,~fl. Thus, we can speak o f  the existence of yet 

another integral invariant. 
In the following we use the notion of multivalued integral of system (1.1). This  is a closed 1-form 0 

such that  
i,,0 = 0. (4.4) 

Locally we have 0 = dg, where 
[? = i~dg = O 

by (4.4). Thus, locally g is a usual integral of system (1.1). If 

H 1 (M,  R) = 0, (4.5) 

then g is well defined globally, and the multivalued integral is an ordinary integral o f  system (1.1). Since 
dim M = 3, conditions (3.2) and (4.5) are equivalent by the Poincar~ duality theorem.  

Throughout the following M ,  v, ~ ,  and �9 are assumed to be analytic. 

T h e o r e m  4. Let M 3 be compact, and let system (1.1) admit a conditional integral  invariant (4.1) 
with 

r • c i , f l ,  c = const. (4.6) 

Then system (1.1) has a nontrivial multivalued integral 0 ~ O. 

P r o o f .  By 'Lemma 7, the function f in Eq. (4.3) is an integral of system (1.1). I f  f ~ const, then the 
proof is complete. Let f = a = const. By integrating both sides of the identity 

d~ = a ~  (4.7) 

over the compact manifold M and by applying the Stokes theorem, we obtain 

a /M fl = O 

Since the 3-form fl is a volume form, it follows that a = 0. Hence, the form �9 is closed by (4.6). 
Set (Lemma 5) 

@ =i,,12. 

Since the 2-form (~ is closed, it follows from Lemma 6 that u commutes with v. T w o  cases are possible: 
1) the vectors u(x)  and v(x)  are linearly dependent at all points x E M;  2) these vec tors  are independent 
almost everywhere. Since v r 0, we see that in the first case 

u(x)  = A(x)v(x) ,  A: M ~ R. 

Since u is a symmetry  field, it follows that A is an integral of system (1.1) [11]. I f  A ~ const, then the 
proof is complete. The case A = const is impossible in view of condition (4.6). I n  the second case, as 
shown in [15], the existence of a nontrivial analytic symmetry field implies the exis tence of a multivalued 
analytic integral ~ r 0. The proof uses the fact that M is three-dimensional and h a s  an invariant volume 
3-form. [] 
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C o r o l l a r y .  Under the assumptions of Theorem 4, Eq. (1.1) cam be in tegra ted explicitly by using t~nitely 
many algebraic operations, differentiations, and quadratures. 

The additional differentiations are needed to find the multivalued integral (see also [15]). 

R e m a r k .  Theorem 4 remains valid if there is a linear integral invariant 

o 

provided that  the 2-form ff = dqo satisfies condition (4.6). 

Since the differential equations of the various versions of the three-body problem cited above do not 
admit  nontrivial  symmet ry  fields and multivalued integrals, it follows that  any conditional integral invari- 
ant (4.1) of these equations must  be a constant multiple of the invariant 

D dZ A dy - dH A dx. 

Since d i m M  = 3, it makes sense to consider only third-order absolute integral invariants. The  corre- 
sponding 3-form is ff~, and by Lemma 3, f is an integral of (1.1). For the cited equations of dynamics, 
f = const .  

Conditions for the existence of integral invariants in Hamiltonian systems with many degrees of freedom 
demand fur ther  investigation. 
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