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SYMMETRIES AND THE TOPOLOGY
OF DYNAMICAL SYSTEMS WITH TWO DEGREES OF FREEDOM

UDC 517.9+531.01

V. V. KOZLOV AND N. V. DENISOVA

ABSTRACT. The problem of geodesic curves on a closed two-dimensional surface and
some of its generalizations related with the addition of gyroscopic forces are consid-
ered. The authors study one-parameter groups of symmetries in the four-dimensional
phase space that are generated by vector fields commuting with the original Hamil-
tonian vector field. If the genus of the surface is greater than one, then there are
no nontrivial symmetries. For a surface of genus one (a two-dimensional torus) it is
established that if there is an additional integral polynomial in the velocities, even or
odd with respect to each component of the velocity, then there is a polynomial inte-
gral of degree one or two. For a surface of genus zero examples of nontrivial integrals
of degree three and four are given. Fields of symmetries of first and second degree
are studied. The presence of such symmetries is related to the existence of ignorable
cyclic coordinates and separated variables. The influence of gyroscopic forces on the
existence of fields of symmetries with polynomial components is studied.

Bibliography: 9 titles.

1. INTRODUCTION

Let Μ be a closed two-dimensional surface that is a configuration space of a
dynamical system with two degrees of freedom. Local coordinates on Μ will be
denoted q\,q-i. In mechanics they are usually called generalized coordinates. Let
Px, Ρ2 be the canonical momenta conjugate to q\, qi- Thus,

x = (q\,Qi,P\, Pi)

are local coordinates in the phase space T*M (the total space of the cotangent bundle
of M). An essential role in the geometry of phase space is played by a symplectic
structure, a closed nondegenerate 2-form

ω = Σ dPs Λ dqs.

Let Η be a real function on T*M. It is uniquely associated to a vector field ν Η
according to the rule

(1.1) ω(υ, -) = -dH.

The field ν is termed Hamiltonian. It generates a Hamiltonian dynamical system
on T*M

(1.2) x = v(x).

In the local coordinates q, ρ these equations take the usual form of Hamilton's
canonical equations

η « . dH . dH
^ 1 2

1991 Mathematics Subject Classification. Primary 7OH33, 70H05; Secondary 70E15, 58F17, 58F05.

©1995 American Mathematical Society
1064-5616/95 $1.00 + $.25 per page

105



106 V. V. KOZLOV AND Ν. V. DENISOVA

As a Hamiltonian Η we take some Riemannian metric on M , a positive definite
quadratic form in p\, Ρ2 whose coefficients are uniquely determined functions on
Μ. In mechanics the equations (1.3) with such a Hamiltonian describe the inertial
motion, and in Riemannian geometry they are the equations of geodesies of the
Riemannian metric under consideration. Equations (1.3) possess the following simple
property: together with a solution q{t), p{t) they admit the solution q(-t), -p(-t).
Following Birkhoff, such dynamical systems are said to be reversible.

As generalized coordinates we can take isothermal (conformal) coordinates of the
Riemannian metric Η. Then the Hamiltonian will have the following form:

(1-4) H=j(p\+pl),

where Λ is a positive function of q\, qi.
We are interested in the problem of symmetries of the dynamical system (1.2)

that are generated by vector fields u on T*M which commute with the original
Hamiltonian field ν:

v.[u,v] = 0.

Such fields will be called fields of symmetries. It turns out that the presence and
shape of fields of symmetries depend in an essential way on the topology of the
configuration space Μ. All the objects occurring below will be assumed to be C°° .

The operator of differentiation along the vector field ν has the following form:

. d . d 1 dA. 2 2, d 1 dA . , 2 N d
L v = A p > — +Ap2— - - — i p \ + p l ) W x - ( l + l )

Let Μ be a vector field with differentiation operator

If Μ is a field of symmetries, then the operators Lv and Lu of course commute.

Definition. If Q\ and Q2 are polynomials of degree η — 1 in the momenta, and
Pi, Pi are polynomials of degree η , then the field u is called a homogeneous field
of degree η.

The degree of a homogeneous field u will be denoted degw. In particular, degv =
2. A field u of symmetries can be expanded in a formal series in homogeneous fields:

u = «o + «i + «2 Η > degu k = k, k > 1.

The operator of differentiation along the vector field UQ has the form

d ^ d

where α ϊ , c*2 are functions on Μ. We have a simple

Proposition. Each homogeneous piece of the vector field u is itself a field of symme-
tries.

The field «o is obviously equal to zero. Otherwise Λ = 0. Therefore we can
restrict consideration to homogeneous fields of symmetries of degree > 1.

A field of symmetries u is said to be Hamiltonian if

ω(Μ, ·) = -dF,
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where F is a uniquely determined function in phase space. If F is a homogeneous
polynomial of degree m in the momenta, then deg u = m . We set u = vF . Then,
as is well known,

[vH, VF] = V{H>F},

where {· , ·} is the Poisson bracket. If u and υ commute, then

{H, F} = const .

Since the Hamiltonian is quadratic, this constant is equal to zero. Hence, the Hamil-
tonian F is an integral of the dynamical system (1.2). Integrals that are linear in the
momenta Pi, P2 generate Hamiltonian symmetries, which were studied by Emmy
Noether.

A field of symmetries u will be called locally Hamiltonian if the 1-form ω(«, ·)
is closed but not exact. In this case the equations (1.2) admit the closed 1-form as
an invariant, which can be called a many-valued integral.

It should not be assumed that fields of symmetries of (1.2) are always Hamiltonian
(or locally Hamiltonian). Here is simple counterexample: if Λ = const, then the
quadratic vector field with differentiation operator

(L5) 44
is a field of symmetries. However, it is not even locally Hamiltonian relative to the
standard symplectic structure ω.

2. MAIN RESULTS

First we discuss the problem of the structure of Hamiltonian fields of symmetries.
It is obvious that if the equations (1.2) admit a smooth integral

F: Γ*Λ/"->Ε,

when any homogeneous form of its Maclaurin series expansion in the momenta is
also an integral.

In [1] the case is considered when the Euler characteristic χ of the surface Μ is
negative, and it is proved that equations (1.2) do not admit an integral independent
of the energy integral Η. According to the Gauss-Bonnet formula, the condition
χ(Μ) < 0 is equivalent to the assumption of the negativity of the mean Gauss
curvature of the Riemannian metric on Μ. Later, Kolokol'tsov [2] gave another
proof of the result of [1], based on the introduction of a conformal structure in Μ.
This method goes back to Birkhoff [3], who studied the problem of the existence
of local integrals of first and second degree in the momenta. Birkhoff considered
conditional integrals, whose derivative vanishes for some value of the total energy
Η = h . He showed that the existence of a conditional linear integral is connected with
the existence of an ignorable cyclic coordinate (on which the Hamiltonian function
does not depend), and the existence of a conditional quadratic integral is connected
with the existence of ignorable separated variables. Global versions of these results
of Birkhoff, concerning the existence of conditional linear and quadratic integrals
of dynamical systems with a configuration space in the form of a two-dimensional
torus, were established in [4].

Recently Bolotin proved [5] that under the condition χ{Μ) < 0 there are unstable
closed trajectories with transversally intersecting separatrices on the energy surfaces
Η = const > 0. From this we obtain the presence of domains with stochastic
behavior and, as a consequence, the absence of an additional integral.
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For χ > 0 the surface Μ is homeomorphic to a sphere or a torus. A description
of the metrics on the two-dimensional sphere and torus that admit nontrivial linear
and quadratic integrals is given in Kolokol'tsov's paper [2] in the spirit of BirkholPs
theory.

We discuss the case χ = 0 in more detail. Here

Μ = Τ2 = {qx, q2 mod 2π}.

It is known that a Riemannian metric on the torus can always be reduced to the form
(1.4) in the large. The question is whether there exist polynomial integrals of degree
> 3 that are independent of Η and do not reduce to polynomials of degree < 2.
Bolotin conjectured that there are no such integrals for the case of the torus. This
conjecture has not yet been completely proved. However, we do have

Theorem 1. Assume that equations (1.3) with the Hamiltonian (1.4) admit an integral
F homogeneous in the momenta and independent of the energy integral, and that one
of the following additional conditions holds:

a) F is an even function of ρ \ and p2;
b) F is an even function of ρ ι (resp., p2) and an odd function of p2 (resp., p\).

Then the equations (1.3) admit an additional integral of degree < 2.

In case Μ is homeomorphic to a two-dimensional sphere, the situation is different.
There are examples of metrics on the sphere for which the equations of geodesies
admit integrals of degree 3 and 4 in the momenta that do not reduce to polynomials
of lower degree.

We shall indicate the scheme for constructing such examples. With this goal we
consider the problem of rotation of a heavy rigid body with a fixed point. This system
admits the rotation group around the vertical. Fixing the zeroth constant of the
corresponding Noether integral (which in mechanics is usually called the area integral)
and factoring by the orbits of the action of the symmetry group, we reduce this
problem to a system with two degrees of freedom on the sphere S2 . The Lagrangian
has the form Τ - V, where Τ is some Riemannian metric on Μ = S2 (the kinetic
energy of the reduced system) and V: S2 —> Ε is the potential energy (see [6]). If
the Goryachev-Chaplygin or Kovalevskaya conditions hold, then the equations with
Lagrangian T—V admit an additional integral which is of degree 3 or 4, respectively,
in the velocities. For example, in the Kovalevskaya case it has the form

(2.1) F = F4 + F2 + F0,

where Fk is a homogeneous polynomial of degree k in the velocities.
We now use the Jacobi least action principle. For this we fix the energy constant

h = T+V > max V.
Μ

According to Jacobi's principle, the trajectories on Μ with energy h are geodesic
curves of the Riemannian metric

(2.2) (h-V)T.

It is clear that the homogeneous function

of degree 4 in the velocities is an additional integral of the metric (2.2).
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In the Goryachev-Chaplygin case the integral has the form F3+.F1. In an analogous
way one constructs a Riemannian metric on the sphere for which the equations of
the geodesies have an integral of degree three.

We do not know any examples of Riemannian metrics on the two-dimensional
sphere that admit nontrivial integrals of degree > 5. It is possible that such metrics
simply do not exist.

Remark. On the two-dimensional torus the Liouville metrics are well known, for
which the geodesic flows are integrated via linear or quadratic integrals. A Riemann-
ian metric is said to be nondegenerately integrable (see [9]) if its geodesic flow is
integrable via a smooth integral such that all the critical points of its manifold on a
constant energy surface are nondegenerate. A. T. Fomenko conjectured that on a two-
dimensional torus any nondegenerately integrable metric is Liouville. In particular,
this means that any polynomial integral reduces to an integral of degree < 2. This
conjecture has not yet been proved. However, Τ. Ζ. Nguyen, L. S. Polyakova, and
V. V. Kalashnikov, Jr., have proved that the conjecture is true at least as regards
complexity of metrics (the concept of complexity was introduced in [9], Definition
8). Namely: the complexity of the geodesic flow of an arbitrary nondegenerately
integrable smooth Riemannian metric on the 2-torus is equal to the complexity of
the geodesic flow of some Liouville metric. A similar assertion holds for metrics
on the 2-sphere. Therefore, as to complexity, the integrable metrics with linear and
quadratic integrals "approximate" an arbitrary integrable Riemannian metric with an
arbitrary smooth integral.

We now proceed to study fields of symmetries of a general form. In [7] the case
when χ{Μ) < 0 was considered. It was proved that any field of symmetries u has
the form f(H)v . Thus, there are no nontrivial symmetries, and, in particular, any
field of symmetries is obviously Hamiltonian. The function

f(H)dH
j

is the corresponding Hamiltonian.

For χ(Μ) = 0 there are more possibilities. We have

Theorem 2. Any field of symmetries of degree one is Hamiltonian.

It is generated by a linear integral and therefore is Noetherian.
Theorem 3. If the Gaussian curvature of the metric on the torus is identically equal to
zero, then any field of symmetries of degree two is Hamiltonian.

An analytic criterion for the metric (1.4) on the torus to be Euclidean is that
Λ = const. As the example of field (1.5) shows, the assumption Λ φ const is
essential in Theorem 3.

Theorem 2 does not hold for fields of symmetries of degree > 3. Indeed, let Λ
be a nonconstant periodic function only of the angular variable q%. Then the vector
field u of degree one defined by the equations

q[ = 1 , q'2 = 0 , p[ = 0 , p'2 = 0 ,

is a field of symmetries. Of course, it is Hamiltonian. However the field (Hu) of
degree three, which is also a field of symmetries, is not Hamiltonian.

We do not exclude the possibility that if a Hamiltonian system with Hamiltonian
(1.4) admits a polynomial field of symmetries of degree η , not collinear to the field
ν , then there must exist an additional integral in the momenta of degree < η .
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The problem of the structure of symmetries of reversible systems on the sphere is
more complicated and is not considered here.

3. IRREVERSIBLE SYSTEMS

We complicate the problem by replacing the standard symplectic structure
ω = Σ dpk Λ

on T*M by the closed nondegenerate 2-form ω + φ, where φ is a 2-form on Μ.
In the local coordinates q\, q2 it has the form

l(Q\,Q2)dqi Adq2.

If we replace ω by ω+φ in (1.1), then we obtain the following for Hamiltonian's
equations:

. _dH_ . _ dH

n n

 9l~dPl'
 g2~dp2'

V ' dH .dH dH

Following Birkhoff [3], such systems are termed irreversible.
The terms in equations (3.1) that contain λ are usually called gyroscopic forces.

Their nature can be different. Gyroscopic forces appear, for example, in passing to a
rotating system of coordinates, and also in the description of the motion of charged
bodies in magnetic fields.

Obviously the equations (3.1) admit the energy integral Η. The problem of the
existence of other integrals, polynomial in the momenta p\, p2, for the equations
(3.1) on closed surfaces was considered by Bolotin in [8]. In particular, for the case
of the two-dimensional torus he established that if equations (3.1) with Hamiltonian
(1.4) have a polynomial integral independent of Η, then

(3.2)

We shall study the more generalized problem of conditions for the existence of
vector fields of symmetries with polynomial components for equations (3.1). In
contrast to the reversible case, here the fields of symmetries will not be homogeneous.
They can be represented as a finite sum of homogeneous fields

u = um + wm_i + • • · , deguk = k,

arranged in order of decreasing degree. The degree of the field u is

deg um = m.

It is clear that um is a field of symmetries of a reversible system (when λ = 0).
This simple remark allows us to use the results of §2.

Theorem 4. A nonzero field of symmetries of degree one is always locally Hamiltonian.
It is Hamiltonian only if condition (3.2) holds.

For m > 2 the situation is different. We have

Theorem 5. Assume that the Hamiltonian field (3.1) admits afield of symmetries of
degree m>2, where the highest homogeneous pieces of the vector fields ν and u are
linearly independent for

/ ? i = 1 , P2 = i ( i 2 = - l ) .

Then (3.2) holds.
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It appears that in Theorem 5 it is sufficient to require that the fields u and υ be
independent. Suppose Μ is a Hamiltonian field with Hamiltonian

F = Fm + Fm-1 + • · · .

Then the condition of independence of the vectors ν and um at the point

Pi = 1, P2 = i

is equivalent to the following: the polynomial Fm is not divisible by Η.
The proofs of Theorems 1-5 are given below.

4. ADDITIONAL ASSERTIONS

In this section we consider the reversible case and do not impose any restrictions
on the degree η = deg u of the field of symmetries u.

Let F be a homogeneous polynomial in p\ and p2 • We denote by F* its value
for pi = 1, p2 = i (z2 = - l ) .

Lemma 1 ([7]). Λ(Ρ,* + iP^) is a holomorphic function of ζ = q^ + iqj .

Since Λ, Ρ*, Ρ2*
 a r e smooth complex-valued functions on the torus

Ί2 = fa , q2mod2n} ,

they are bounded. Hence, according to Lemma 1 and Liouville's theorem,

(4.1) A(P1* + iP2*) = y1 + iy2,

where γι, yi are some real constants.

Lemma 2. y\ = y-ι = 0.

For the proof we compute the commutator [Lu, Lv] and set the coefficients of
d/dq\ and d/dqi equal to zero. As a result we obtain the relations

The index of summation k takes the values 1 and 2.
Setting px — 1, p2 = i in (4.2) and (4.3), we find the equalities

We multiply (4.5) and / and add it to (4.4). As a result we obtain

i + iPi = j^{Q\ + iQl) + ij^Qi + iQi),

or, using (4.1),

(4.6)
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Averaging over the torus, we arrive at the equality

(7i + i72) / / — τ — = 0.
Jo Jo Λ

Hence,

as required.

Lemma 3.

Q*\ + iQi = c\ + ici,
where c\, c2 are real constants.

Indeed, equality (4.6) together with the conclusion of Lemma 2 is a criterion for
the function Q\ + iQ\ to be holomorphic. It remains to use Liouville's theorem.

Lemma 4. /? + P2* = 0.

For the proof we compute the commutator [Lu, Lv] and set the coefficients of
d/dp\ and d/dp2 equal to zero. As a result we obtain the relations

We set p\ = 1 and ^2 = ' and use Lemma 2. Then from (4.7) and (4.8) we obtain
the equalities

Hence, /^ is a holomorphic function of

ζ = qx + iq2.

By Liouville's theorem,

PI = μ* = const ( ^ e C).

Using Lemma 3, from the relation (4.4) it is easy to derive the equality

where Μ = 1 /Λ. Hence,

"'Γί
Jo Jo

This implies μι = 0. Analogously we can derive that μ2 = 0. This completes the
proof of Lemma 4.

At the same time we have obtained the relation
(4.9)

which will be used later on.
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We set

where Φ^, Ψ& are single-valued functions on T2 . By Lemma 3,

(4.10) Φ 1 - Ψ 2 = ί : 1 , Ψ , + Φ 2 = ο 2.

Equality (4.9) splits into two:

, &Φ2Μ _ n dVjM , ΘΨ2Μ _ η

' dQl

 + dq2

Lemma 5. The function σ = Ψι - Φ 2 satisfies the equation

where Δ is the Laplace operator.

Equation (4.12) is simple to derive from (4.10) and (4.11). It plays an essential
role in what follows.

Theorem 6 ([2]). Let F be a homogeneous polynomial of degree η > 2 in the mo-
menta and suppose that F* = 0. Then

F = (p2+p2

2)G,

where G is a polynomial in p\ and p2 of degree η -2.

It follows from Lemmas 4 and 6 that

(4.13) Pi = { P i + P 2 ) K i , J = l , 2 ,

where the Kt are polynomials in the momenta of degree η - 2. If we had proved
that

Q\ = Q*2=0

(cf. Lemma 3), then the field of symmetries u could be represented as a product
Hw , where w is a field of symmetries of degree η - 2. By induction the problem
about homogeneous fields of symmetries would reduce to a problem about fields of
symmetries of degree η < 2. Unfortunately, Q*k Φ 0 in the general case.

Lemma 7. The following equality holds:

(4.14) Ι ψϊ- + 11^£ + Kf + iK* = i/, + iu2 = const .
2 aq\ 2 dq2

Proof. It is clear that

Substituting (4.13) and (4.15) in (4.7) and (4.8), cancelling by p\ + p\ and then
substituting p\ = 1, p2 — i, we obtain two equalities:

ΘΚΤ ..dKT . r , 8 A n! + A ± -iK*—- = 0,l dq
Ί®ΐ-Ζ-2+ϊ&2α Q +iK2—- + A—!- + iA-—± -iK—-

(4 16) ' d9\dq2

 ldqx dqx dq2

 l dq2

, d2A , d2A .K.dA dKj dK*2 ΘΑ
Q + Q + + h + l K K
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Again setting Μ = Ι/Λ, we transform the sum

d2A d (~,.,dK\ d

_ (dQ\M dQ\M\ dA

V + )
The last term is equal to zero in view of (4.9). Analogously,

We multiply the first sequence of (4.16) by Μ, the second by iM, add them, and
use the relations just obtained. As a result we get the equality

1 d

( 4 π ) 5

We transform the sum

( 4 , 8 )

Here we used the identity
Q* = iQi =ci+ ic2

(Lemma 3). Since Μ Κ Ξ 1, the last term in (4.18) is equal to zero. Using this
remark the sum of the first two terms in (4.17) takes the following form:

9

However, using (4.9),

+ dq2

 Λ \ dqx

 + dq2

dq2 ·

Thus, we finally obtain

a \\dQ\ idQs „. , Λ , ,. a riser , ι am
[2 dq\ 2 dq2 ' z\ dq2 [2 dq{ 2 dq2

Hence, by the Cauchy-Riemann theorem,

1 dQ\
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is a holomorphic function of q, + iq2 . Since it is bounded, it is constant. This proves
the lemma.

Let f b e a polynomial in ρ,, p2. For brevity we write dF*/dpk instead of
(dF/dpk)*. Obviously,

d2F* d2F*

Lemma 8. v, = v2 = 0.

Proof. Using (4.13), we differentiate (4.2) with respect to p\ and (4.3) with respect
to p2, and substitute p\ = 1, p2 — ι'. As a result we obtain the relations

a2n*
dq2dpx

Since Q\ and Q2 are homogeneous polynomials in the momenta of degree η - 1,
by Euler's theorem

Substituting p\ = 1, p2 — ι':, we obtain the relations

( 4 · 2 2 )

We multiply equations (4.20), (4.21) by Μ, add them and use formulas (4.19)
and (4.22). After simple transformations we obtain the relation

1 '

κ* + or = - 1 ^ - 1 ^ £ - !LL}.^L_ 2
1 2 2dq! 2dq2 2 dqx 2 dq2

dPl

 + 8p2 ) + 2 dq2 \ dPl

 + dp2

V dp, 'dp,) 2 dq2 V dp2 dp2

We set

= dQ* dQ\
dp2 dp, ·

Using (4.22) we obtain the relations

d \ dp dp)
= i ( + i

dp, + dp2 dqx dp2 \ dp, dp2)

= (« - \)Q\ - i(n - 1)<2| - ir,
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Substituting these relations in (4.23) and using (4.19), we obtain
(4.24)

M - l . a . - , . „ , i dr I dr ι , J A 1 ..9Λ
+ ^ ^ ( β ί + / β 2 ) - 2 ^ + 2 ^ + 2 Λ / ^ Γ - 2 Λ / ^

By Lemma 3,
Q\ + iQl = const.

It is easy to verify that the sum of the last four terms in (4.24) is equal to

/ . (drM .drM\

As a result, (4.24) takes the form (after using (4.14))

.drM\

or ι A (drM .drM\
-2A[-d^ + l^T) =

Averaging over the two-dimensional torus, we obtain the relation
ι-2π

Ό JO

Since Μ > Ο, it follows that v\ = v2 = 0, and the lemma is proved.

At the same time we have obtained the equality

drM .drM „

which is the condition for the function rM to be holomorphic. By Liouville's theo-
rem,

rM = Ci + 1C4.

Thus, the following result holds.

Lemma 9.

We note in conclusion that equality (4.14) (taking Lemma 8 into account) can be
rewritten in the following equivalent form:

dO* dO* dP* dP*

dq\ dq% dp\ dp2

We summarize the results of this section:

moreover, the functions Q\ and Q\ satisfy equations (4.9), (4.12), (4.25), and
(4.26).

5. PROOF OF THEOREM 2

For η = 1 the functions Qk do not depend on the momenta (so that Q*k —
and

Pk = akpx + bkp2, k=l,2.
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By Lemma 4,
P£=ak + ibk = 0.

Hence,
ak = bk = 0 and ^ Ξ Ο (k = 1, 2).

Since the Qk are real functions, then, by Lemma 3,

Qk = ck — const; k — 1, 2.

The field u with differentiation operator (Lie derivative)

a d

is Hamiltonian; its Hamiltonian is the linear function

F = cxpx + C2P2,

which is an integral of the equations of motion.
By (4.9), the function Μ = 1/Λ satisfies the equation

dM dM n

Since u Φ 0, it follows that c\ + c\ Φ 0.
If the quotient C1/C2 is irrational, then Μ = const. Let C\/C2 — k/l, where k

and / are relatively prime integers. In this case Μ is a function only of the variable

(5.1) q>\=lq\-kq2.

By Bezout's theorem, there are two integers r and s such that

kr + ls = l.

We set

(5.2) <p2 = rqx + sq2.

The relations (5.1), (5.2) define an automorphism of the two-dimensional torus. Ex-
tending this transformation to a canonical transformation, we arrive at the case when
the Hamiltonian Η does not depend on the angular coordinate ψ2 • Thus, if there
is a nontrivial field of symmetries of degree one, then there is an ignorable cyclic
coordinate.

6. PROOF OF THEOREM 3

For η — 2 the functions Qi and Qi are linear in the momenta:

Qk = akPi + bkP2, k = 1, 2.

It is clear that

Hence, σ = b\ - 02 , where σ is the function from Lemma 5. By (4.25),

σ Μ = c$ + icn = const, Α(σΜ) = 0.

Thus, equation (4.12) is simplified:

(6.1) 2ci-—-— = c2 I ϊ τ ) ·
dqldq2 \dq\ dq\ )
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We assume that
c\ + c\ φ 0.

The case C\ = c2 = 0 will be considered below. We use Fourier's method. Let

Μ = Σ Mmim2e^m^+m^, (m,, m2) e Z 2.

Then from (6.1) we obtain a chain of relations

(6.2) \2cxmxm2 - c2{m\ - ml)]Mmim2 = 0.

We consider the set

Β = {(mi, m2) e Z 2 : Mm,mi φ 0}.

In view of (6.2) for points of Β we have the equality
m\in2

—χ = = const .
m\ — mj

Let («i, «2) be another point of Β. Since

m\ - ml n\- n\'

it follows that either
1) mi«2 = mini — 0

or
2) m\ri\ + W2«2 = 0.

In the first case the points lie on one line passing through the origin, and in the
second case these points lie on two lines l\, l2 which intersect orthogonally at the
origin.

Let
(m?,m0)^(0,0)

be a point of the integer lattice Ζ 2 , lying on l\ and closest to the origin. It is clear
that all points of l\ Π Ζ2 have the form

( m i , m2) = {km°l,Xml), A e Z .

Since (m2, -m?) is the point closest to the origin of

(/ 2 nz 2 )\{0,0},

then all the points of l2 ΓΊ Z2 have the form

(mi, m2) = {Xml, -Am?), λ e l .

Hence,

(mi,m2)€/i (mi , m2)€h

g{m% -

where / and g are some 2re-periodic functions.
We pass to new angular coordinates x\, x2 mod 2π according to the formulas

% m\q2, x2 = m% - m\q2.
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We extend this transformation to a canonical transformation q, ρ —> χ, y, by setting

[(m°) 2 + (m°2)
2]yi = m°lPl + m°2p2,

In the new variables χ, y the Hamiltonian (1.4) takes the following form:

Thus, the variables χ and y are separated. The function (6.3) is the Hamiltonian
of a Liouville system with two degrees of freedom. Equation (6.1) appeared in [4]
in connection with the problem of the existence of a quadratic integral.

Thus, we may assume that

where F and G are 27i-periodic coordinates. Moreover, in correspondence with the
assumption of the main theorem (§1), Μ Φ const.

Equation (6.1) gives us that

c2(F"-G") = 0.

Here the primes denote the derivative of a function of one variable. Since the func-
tions F and G are periodic and at least one of them is not constant, obviously
c2 = 0. Corresponding to the assertion of Lemma 3,

(6.4) a x - b 2 = cx, a2 + bx=Q.

Moreover,
σ Μ = c3 + ic4 — const.

Since the function σ = bx - a2 is real, c* = 0. Using equality (6.4) we conclude that

(6.5) c3 =-2a2M = 2biM.

We now use equality (4.9). From it we get the two relations

dMax dMa2 _ dMbx dMb2

+ ~ ~^qT + ~dqV~
Using (6.5) we arrive at the equalities

(6.6) Mb2 = <pi(ql), Max=(p2(q2),

where ψ\ and φ2 are periodic functions of one variable.

Using the first equality of (6.4), we obtain a chain of equalities

cxF + cxG = cxM = (ax - b2)M = (p2{q2) - φχ(qx),

from which we get
φι =-cxF + c5, φ2 = ϋχ0 + ο%,

where Cs is some constant that can be set equal to zero. In fact, we set

F=F+^, G = G - — .
Ci CX

Then
φχ = -εχΡ, φ2 = εχ0, F + G = F + G.

Recalling that Μ = Ι/Λ, from (6.5) and (6.6) we obtain the desired equalities

ax=cxGA, a2--c0A,

bx=c0A, b2 = -cxFA, co
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Finally, using equality (4.14) and Lemma 8 we obtain

i^-(a, + ibx) + \-^\d! + ib2) + K\ + iK*2 = 0.

Since η = 2, Κ* and K2 are real functions. Hence,

κ* - _i
' 2 2dq2 2°lU dqx '

Equalities (6.7) and (6.8) lead to the final formulas for the field of symmetries u:

q{ = CiGApi + c0Ap2 , q'2 = -c0Apx

1 / ^ΘΑ dA

(6.9) P i = - { G

Hence, the field u can be represented as the sum of two fields:

Ci«i =C0U2.

It is easy to check that u\ is a Hamiltonian field of symmetries with Hamiltonian

2{F + G) '

The vector field u2 must also be a field of symmetries. It is easy to check that the
condition that the fields ν and u2 commute is the equality

(6.10)

Since Λ > 0, we can set Ν = In Λ. Equation (6.10) is equivalent to the equation
AN = 0. Since a bounded harmonic function is constant, Λ = const. Hence, if Λ
is not a constant function, then CQ = 0.

It remains to consider the degenerate case, when

We shall show that in this case the field of symmetries is collinear to the Hamiltonian
vector field ν.

Indeed, the relation

QX + iQ2 = 0

leads to the two equalities

(6.11) ax -b2 = a2 + bi =0.

Using the relations

we find that the functions Q^ and P^ have the following form:

Q\ = a\p\ - a2p2, Q2 = a2pi + axp2,

Pk=ik{p\+P2

2), k = 1 , 2 .
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Furthermore, equalities (4.26) and (6.11) give us that

Moreover, from (4.25) and (6.11) we obtain the relation

(6.12) a2 = οι2Α, a2 = const .

The condition that the fields u, υ commute leads to two equations (see (4.9))

d a\ _d_O2 _ _ J L f 2 _^_^i _ ο
dqx A dq2 A ~ dq{ A dq2 A ~ '

Using (6.12), they reduce to the following form:

d a, = d ax =

dq{ A dq2 A

Hence, a.\ = a\A, where a\ — const.
Thus, the field of symmetries u has the form

(6.13)

q[ = Α{αιΡι - a2p2), Q2 = A(a2px + a{p2),

The terms containing αϊ give a field proportional to the original field ν . Therefore,
one can set a\ = 0. But then (6.13) will coincide with the field (6.9), in which it
is necessary to set C\ = 0. However, as shown above, it commutes with the field υ
only for a2 = 0.

This completes the proof of Theorem 3.

7. PROOF OF THEOREM 1

We now consider a Hamiltonian field of symmetries generated by a homogeneous
Hamiltonian of degree m :

F = fm,oP? + fm-\,\PT~lPi + ••• + fo,mP2 •

S i n c e Qk = dF/dpk (k = 1 , 2 ) , i t f o l l o w s t h a t

Q* = mfm<0 + {m- l ) / m _ l i l i + ( m 2

Q2 = fm-X.l + 2fm-2,li + 3/m- 3 ) 3 i 2

We recall (see §4) that σ = Ψχ - Φ 2 , where

Hence,
ff = ( w - 2 ) / m _ l i i - ( / n - 6 ) / m _ 3 > 3 + ··· ·

Suppose that one of the following conditions holds:
a) the function F is even with respect to p\ and p2 ;
b) F is even with respect to p2 and odd with respect to ρ ι.
Then obviously

/m-1,1 = fm-3,3 = · · · = 0

and, in particular, σ = 0. But then, according to (4.12), the function Μ = A~l

satisfies equation (6.1). If c] + c\ Φ 0, then, as proved in §6, Hamilton's equations
admit an integral of degree not greater than two.
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We now consider the case c\ = c2 = 0. Then by Lemma 3

Hence (Lemma 6), F = ΗΦ, where Φ is a homogeneous integral of degree m — 2,
having the form a) or b). Applying on decreasing induction m, we arrive at an
integral of degree < 2.

In the case when F is even with respect to p\ and odd with respect to p2, the
function σ, as a rule, is different from zero. However, this case reduces to case b)
by a simple renaming of the variables.

8. PROOF OF THEOREM 4

Using the results of §5, a field of symmetries of degree one of an irreversible system
has the following form:

(8.1) q[ = c i , q2 = c2, p[ = ζι, ρ'2 = ζι,

where C\, c2 are some constants, and Ci and ζ2 are functions on the two-dimen-
sional torus. Here, according to §5, the function Λ satisfies the equality

dA dA _
c + 0

It is easy to check that the conditions for the commutation of the original Hamil-
tonian vector field υ with the field (8.1) lead to the equalities

Thus, the form of a field of symmetries of degree one is the same in both the
reversible and irreversible cases. Here the functions λ and Λ satisfy the same
equation. If c\ /c2 is irrational, then Λ = const, λ = const. Otherwise (when
c\/c2 = k/l, k, I € Z) we can pass to the new angular coordinates q>\ and φι
according to formulas (5.1) and (5.2). It is clear that the right-hand sides of the
equations (3.1) will not depend on the coordinate φ2, and the field of symmetries
has the simplest form

(8.2) P i = 0 , <p'2 = U ψ[ = 0, Ψ2 = 0.

Here ψ\ and ψι are canonical variables conjugate to ψ\, φ2. Is the vector field (8.2)
Hamiltonian? This problem reduces to the solvability of the equations (see (3.1))

n- — _

ΘΦ

Obviously, Φ = ψ2 + α, where a is an as yet unknown function on the torus
Τ2 = {φι, 0>2mod27r} . From the last two equations of the system (8.3) we obtain
the desired relations

da . . . da

Hence, α is a function only of ψ\, and a' = λ. Hence

a = (λ) φ ι +Α,
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where A is a uniquely determined function on the torus, and

Thus, in the irreversible case a field of symmetries is locally Hamiltonian. The
Hamiltonian Φ will be a uniquely determined function in phase space if (λ) = 0.

9. PROOF OF THEOREM 5

We consider a field of third degree η > 2, defined by the equations

Here P^, Rk, Qk > Sk > ^Ht. · · · (& — 1 > 2) are homogeneous polynomials in the mo-
menta p\, P2 of degrees η, η - Ι, η — \, η — 2, η — 2, ... , respectively. The dots
denote terms of degree < η - 2.

Setting the coefficient of d/θρχ in the commutator of the operators Lv , Lu equal
to zero, we extract the homogeneous terms of degree η and then set ρ ι = 1, p2 = ι:.
As a result we obtain the relation

QX^-I + QI-Q^I-P—

dR*. A .dRI

*~dq2 —\dp, "dp2) "·

By Euler's formula for homogeneous functions, the expression in parentheses is
equal to nPx*. By Lemma 4, Px* - P2* = 0. Therefore, equation (9.1) takes the form

(9.2)
. dR*A DtdA. .dR\*. nι ^ R2-^—i-A-^-J-i = 0.

d 2d d
+ ζ Ά ^ ι ^ R 2 ^ i A ^

^ 2 dq2 dqx 2dqx dq2

Setting the coefficient of d/dp2 equal to zero, we obtain the analogous equation

We multiply (9.3) by i and add it to (9.2):

.d(Rl + iR*2)A =

dq2

This is the Cauchy-Riemann condition for the function (i?* + iR2)A to be holomor-
phic. Since it is bounded, it is constant:

(9.4) Λ(Λί + iR*2) = δχ + ΐδ2 = const.

Now setting the homogeneous terms of degree η - I equal to zero and making
analogous transformations, we obtain the relation

If δ\ + ίδ2 φ 0, then by (9.4) the mean value of the function λ over the two-
dimensional torus is equal to zero.

We now consider the case when δχ = δ2 — 0, i.e.,

(9.6) R[ + iRl = 0.
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Now setting the terms of degree n - 1 in the coefficients of d/dq\ and d/dq2 equal
to zero and using relation (9.6), we obtain the equation

( 9 7 ) 2 ( Μ ) + ,.2(ίί±31 + Λ ί ( η_1 ) ( ί | + /£2) = ο.

If c\ + IC2 φ 0, then the mean value of λ is equal to zero. Since for P\-\, pi = i
the functions Pi, P2 vanish, the highest homogeneous pieces of the vector fields υ
and u at the point p\ — 1, p2 = i are equal, respectively, to

(Λ,Λ/,0,0) and {Q\, Q*2, 0 ,0) .

These vectors are linearly independent if

QV ~Q*2 = M* + iQl) = i(cx + ici) φ 0.

This completes the proof of the theorem.

Remark. By induction one can show that if the mean value of the function λ over
the torus is different from zero, then

If the field of symmetries is Hamiltonian, with the Hamiltonian Fm + Fm-i Η ,
then it follows from this that all the polynomials Fk (k < m) are divisible by Η.
Hence, in turn, we get the assertion of Bolotin's theorem [8].
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