
GROUPS OF SYMMETRIES OF GEODESIC FLOWS ON CLOSED SURFACES 

V. V. Kozlov 

i. Introduction. Basic Result. 

Let M be a compact two-dimensional Riemannian manifold. The Riemannian metric 

! 
ds 2=~ ~Tg~j(q) dq idqj (i) 

generates a Hamiltonian system in the cotangent bundle T*M with Hamiltonian function 

1 1 - - = 7  :~ ,~ t, iv j ,  (2 )  

where  UgijH i s  t h e  i n v e r s e  m a t r i x  t o  I tgi j l t .  Under  t h e  n a t u r a l  p r o j e c t i o n  T*M ~ M t h e  p h a s e  
t r a j e c t o r i e s  o f  t h e  s y s t e m  w i t h  H a m i l t o n i a n  (2 )  go i n t o  g e o d e s i c  l i n e s  o f  t h e  m e t r i c  ( 1 ) .  
The r e s t r i c t i o n  o f  t h e  H a m i l t o n i a n  s y s t e m  t o  t h e  i n v a r i a n t  s u r f a c e  H = 1 i s  u s u a l l y  c a l l e d  
t h e  g e o d e s i c  f l o w  on t h e  R i e m a n n i a n  s u r f a c e  (M, d s ) .  

From t h e  p o i n t  o f  v i ew  o f  c l a s s i c a l  dynamics  t h e  s y s t e m  w i t h  H a m i l t o n i a n  f u n c t i o n  (2 )  
d e s c r i b e s  t h e  m o t i o n  o f  an i n e r t i a l  m e c h a n i c a l  s y s t e m ;  M i s  t h e  c o n f i g u r a t i o n  s p a c e  and 

1 ~ ' ~  

is the kinetic energy. 

Let v be the Hamiltonian vector field on T*M corresponding to the Hamiltonian function 
(2). A vector field u (defined on T'M) is called a field of symmetries of the Hamiltonian 
system if [u, v]----0, where [., .] is the commutator of vector fields. Equivalent definition: 
the phase flow of the dynamical system generated by the field u carries solutions of the 
Hamiltonian system into solutions of the same system. 

It is clear that there is always a trivial field of symmetries u = ~v, = = const. More 
generally, if u = iv is a field of symmetries, then the function %(p, q) is an integral 
of the Hamiltonian system with Hamiltonian (2). 

According to the rectivication theorem, in a small neighborhood of each non-singular 
point in T*M (when p ~ 0) the Hamiltonian system always has a three-parameter family of 
nontrivial fields of symmetries. From this point of view the problem of existence of fields 
of symmetries is meaningful when the fields are defined everywhere on T*M. 

Let F be a function on T'M, v F be a Hamiltonian vector field with Hamiltonian F. Since 

Iris, Vr| = vm,~, ~ 

({., .} being the Poisson bracket), to each integral F of the Hamiltonian equations with 
Hamiltonian H corresponds a field of symmetries u = v F. The fields v H and v F are inde- 
pendent if the functions H and F are independent. Hence the problem of existence of non- 
trivial fields of symmetries contains as a special case the problem of the existence of 
supplementary integrals independent of the function H. 

Let M have the structure of a real analytic manifold and the coefficients of the Rieman- 
nian metric (i) be local analytic functions on M. It is proved in [i] that if the Euler 
characteristic of M is negative, then the Hamiltonian system with Hamiltonian (2) has no 
integral which is analytic on T*M and independent of the function H. It turns out that 
the analogous result also holds in the more general problem of groups of symmetries. We 
shall assume that the field of symmetries u is continuously differentiable in (p, q) ~ T*M 
and analytic in p. More precisely, the operator of differentiation L u along the field u 
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carries analytic functions defined on T*M into functions of class C I, depending analytically 

on the momenta Pl, P2. 

THEOREM. Let x(M) < 0. Then u = Iv, where I is an analytic function of H. 

This result contains as a special case the basic theorem of [I]. There are many exam- 
ples of integrable systems when x(M) e 0. 

Let us assume that the curvature of the two-dimensional Riemannian manifold (M, ds) 
is everywhere negative. Then the geodesic flow will be a U-system [2]. In this case one 
can assert more: the geodesic flow does not admit nontrivial fields of symmetries of class 
C I (see [3]). The proof of this fact uses the everywhere denseness of the set of hyperbolic 
long-periodic closed trajectories. We note that ergodic systems do not admit nonconstant 
integrals but nontrivial symmetry groups may exist. 

Remark. One should keep in mind that analytic dynamical systems can have fields of 
symmetries of finite smoothness. An example is a system of differential equations on the 
two-dimensional torus T 2= {xl, x 2 mod 2~} of the following form: 

x, = X, z2 = ~X, (3 )  

where ~ ~ R, X is a positive analytic function on ]~. One can show that for suitable choice 
of the function X the real axis R = {7} splits into disjoint sets m e, m~ .... m k ..... such 
that for 7 e m e the system (3) has a nontrivial analytic field of symmetries, for ~ e m~ 
the system (3) admits an infinitely differentiable field of symmetries but has no analytic 
symmetries, ..., for 7 e mk there is a field of symmetries of class C k but there are no 
nontrivial fields of symmetries of class of smoothness C k+1, .... All the sets me, m~, 
..., m k .... are everywhere dense on the real line and have the cardinality of the continu- 
um; the measure of the set R \m e is zero. 

A. N. Kolmogorov showed [4] that systems on the two-dimensional torus having no singular 
points and admitting an integral invariant reduce to the form (3). 

2. Proof of the Theorem 

We shall assume that M is orientable; if not one can pass to a regular two-sheeted 
covering. We endow M with a complex-analytic structure. For this, we cover M by charts 
with local isothermal coordiantes q~, q2; passage from chart to chart is defined by a local 
holomorphic function of the complex variable ql + iq2. In these coordiantes the Hamiltonian 
(2) assumes the form 

H = A (q~, q~) (p~ + p~)/2. (a) 

A complex-analytic structure on M was already used by Virkhoff for solving the problem 
of conditions for the existence of integrals which are polynomial in the momenta of degree 
at most two [5]. Birkhoff's method lies at the base of the new proof found by V. N. Kolo- 
kol'tsov of the theorem on the nonexistence of supplementary analytic integral under the 
condition that x(M) < 0 [6]. 

The operator of differentiation along a Hamiltonian vector field corresponding to the 
Hamiltonian function (4) assumes the form 

p o 1 y o . ,  o 
L,. = - - -  Apj  Oq i 2 .._."~(P~. q p~) op s (5) 

Let 

L,, _ , . j Q . i ~  "" 2 P j  Op., (6) 

be the operator of differentiation along the field of symmetries u. By assumption the func- 
tions Qj, Pj are analytic in the momenta Pl and P2- We expand them in series in homogeneous 
forms in the momenta 
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If the operators (5) and (6) commute, then the operator (5) commutes with each of the 
operators 

L ( " ' =  V '  ~ + , n >,- , .  
.a... eq j (7) 

For n = 0 it is necessary to set Qj = 0. This obvious assertion lets us reduce the problem 
of analytic field of symmetries to-the problem of a field of symmetries with homogeneous 
polynomial components. Thus, in what follows, instead of the operator (6) we shall consider 
the operator (7). 

The following two auxiliary assertions are used several times below. Let 

F = ~.+~=.  f , ,: (q,, q2) P;P~ 

be a homogeneous polynomial of degree n with differentiable coefficients. Let Pl = i, 
P2 = i. Then F = U + iV, where U and V are real functions of ql, q2- Let us assume that 
U and V satisfy the Cauchy-Riemann conditions. Then F* = U + iV is a local homomorphic 
function of z = qz + iq2. 

LEMMA 1 (cf. [6]). Let z + w(z) be a holomorphic function. Then F*(z) = F* (w(z)) 
(w'(z))-n. 

LEMMA 2 (cf. [6]). If x(M) < 0, then F*----0. 

Indeed let F*(z)~ 0. Then according to Lemma i, the differential form 

(dz)n/F * (z) ( 8 )  

is invariant with respect to holomorphic changes of variables. For n = 1 the form (8) is 
an ordinary Abelian differential. When n > i, it is natural to call this form an n-differ- 
ential. 

It is well known that for any Ableian differential on a compact Riemann surfac@ M the 
difference between the number of zeros and the number of poles is equal to -x(M). For an 
n-differential this difference is obviously equal to ~x(M). Since F* is locally holomorphic, 
the n-differential (8) has no zeros. Since X < 0, its number of poles is negative. We 
have obtained a contradiction. 

Let Pj* (Qj*) be the value of the polynomial Pj (Qj) for Pl = i, P2 = i. 

LEMMA 3. R = A(PI* + iP2*) is a holomorphic function of z = qz + iq2. 

Proof. We calculate the commutator [Lu, L v] and we equate the coefficients of 8/8pi 
and 8/8p2 to zero. As a result we get the relations 

= p~ + i A aqj 0ql dq2 

0,: 0,: 
Oq--T "~ ~q+= A ~qj 

From this it follows that 

.) aA P2 ~-0, 
dq~ 

OA D* + ~ - ,  = O. 

aR/aq, -4- i aR/aq2 = o, 

(9 )  

which is a criterion for the function R to be holomorphic. The lemma is proved. 

According to Lemma 2, R------O. Thus, PI* + iP2* = 0. From (9) we get the two equations 

ap~/aq, + i aP~/aq= = 0 ,  / = t , 2 .  

C o n s e q u e n t l y ,  P j *  a r e  l o c a l  h o l o m o r p h i c  f u n c t i o n s  o f  z = q l  + i q 2 .  By Lemma 2,  P j * = 0 .  

LF2OIA 4 ( c f .  [ 6 ] ) .  L e t  F*----0. Then F = HF'  w h e r e  F '  i s  a h o m o g e n e o u s  p o l y n o m i a l  o f  
d e g r e e  n - 2.  

Since Pj*--0, one has Pi = HPj'. Now we show that the polynomials Qj are also evenly 
divisible by-the polynomial 

LEMMA 5. S = QI* + iQ2* is a holomorphic function. 
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Proof. 
to zero, and use the identities Pi*--=0. As a result we get 

O~ OA -l-Q* a, OQ~ aO* = 0 ,  oq: - - A - - ~ - q - - i A  aq"-'T 

i (Q* aA .~_ ~ .  O.k ] O ~  aQ* Oq----7 v2--g~q,~ / - -  A - -  iA oq~ = O. 

It follows from this that 

We calculate the commutator [Lu, Lv], equate the coefficients of 8/Oqz,, O/Oq2 

(1o) 

as/aql  -F i OS/aq 2 = O. 

Consequently, S is a local holomorphic function. Lemma 5 is proved. 

By Lemma 2, S:---0. But then from (10) we get the two relations 

Q~+i- a __Q~ =o,  j = ~ , z .  a 
Oq, A Oq~ A 

Consequently, Qj*/A are holomorphic functions which are equal to zero according to Lemma 
2. Applying Lemma 4 we get that Qj = HQj' 

Thus, u = Hu'. Since the factor H is an integral of the equation of motion, u' is 
also a field of symmetries. Its degree in the momenta is two less than the degree of the 
field u. By decreasing induction on n the original problem reduces to the problem of the 
existence of a field of symmetries with degree 0 or i. 

The case n = 0 is trivial. For n = 1 obviously Qj = Qj* = 0. Let Pj = ~jPz + NjP2. 

As was shown above, the functions Pj* = Sj + iqj=--0. Consequently, ~j = qj~-0. Hence for 
n = 1 the field of symmetries is identically equal to zero. 

The theorem is completely proved. 

3. Concluding Remarks 

Apparently Theorem 1 of Sec. 1 is valid in the more general problem of motion of revers- 
ible systems in a potential force field with analytic potential energy V # const. More 
precisely, if x(M) < 0, then a Hamiltonian system has no nontrivial analytic fields of sym- 
metries on a three-dimensional energy surface T + V = h, where h > maxMV. 

Let M' be a connected and geodesically convex subdomain with boundary of a Riemannian 
manifold M. Apparently, if x(M') < 0, then a Hamiltonian system also has no nontrivial 
fields of symmetries. Under these assumptions in [7] the bsence of a supplementary analy- 
tic integral is proved. From this would follow the absence of groups of symmetries in the 
problem of n fixed gravitating centers for n > 2 (cf. with [7]). 

Finally, it would be desirable to establish multidimensiomal versions of the theorem 
of Sec. i. Topological obstructions to the complete integrability of geodesic flows in 
the case dimM > 2 are found in [8]. 
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