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Introduction

The general nonrelativistic scalar Schrödinger operator in an external time-
independent electromagnetic field Fij has the form

(1)
Ĥ =

n∑
α=1

(∂α − ieAα)2 + u(x), x = (x1, . . . , xn),

i, j = 0, 1, . . . , n, α = 1, . . . , n, ∂α = ∂/∂xα.

By definition, we have electric and magnetic fields:

(2) Fij = −Fji, F0α = Eα = ∂αu, Fαβ = Hαβ = ∂αAβ − ∂βAα.

“Gauge” transformations (3) preserve the equation Ĥψ = εψ

(3) Aα → Aα + ∂αϕ, ψ → ψ exp(−ieϕ), u→ u, ε→ ε.

Using (3), we may reduce the operator Ĥ for n = 1, 2 to the canonical form:

n = 1: Ĥ = ∂2 + u(x), ∂ = ∂/∂x,(4)

n = 2: Ĥ = ∂∂̄ +A∂̄ + V (z, z̄),(5)

z = x+ iy, z̄ = x− iy, ∂ = ∂/∂z, ∂̄ = ∂/∂z̄.

It is well known that remarkable one-parametric families of the linear operators (4)
are very important in the soliton theory ([1]):

(6)
dĤ

dt
= [Ĥ, Bm] (“Higher KdV’s”).

Here Bm = ∂2m+1
x +

∑2m
j=1 bj(u, ux, . . . )∂2m−j

x is such a linear differential operator,
that the equation (6) is equivalent to nonlinear P.D.E.

(7)

ut = Φ(u, ux, . . . , u
(2m+1)
x ),

B1 = ∂3
x +

3
y
(u∂x + ∂xu) ↔ Φ1 = uxxx + 6uux,

B0 = ∂x ↔ Φ0 = ux.

Direct generalization of (6) to n = 2 is possible only in parabolic case (8)

(8) Ĥ = P̂ = σ∂y + ∂2
x + u, σ ∈ C.

For example, the well-known KP-equation

(9)
Wx = uy,

3σ2Wy = ut − 6uux − uxxx, σ2 = ±1
1
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is equivalent to “Lax-like” equation:

dP̂

dt
= [P̂ , B], B = ∂3

x +
3
2
u∂x +W

(V.S. Driuma, A.B. Shabat, V.E. Zakharov 1974).
There is an elementary theorem: any Lax-like deformation (6) of the class of all

smooth two-dimensional Schrödinger operators (1) is trivial for n > 2.
Nontrivial two-dimensional generalization of the equation (6) was found by

S.V. Manakov in [2]:

(10)
dĤ

dt
= [Ĥ, b] + CĤ.

The deformation (10) for a certain linear P.D.O.’s B,C and Schrödinger operator
(5) is equivalent to the system of nontrivial, nonlinear P.D.E.’s

(11)
Vt = Φ1(V,A, Vx, Ax, Vy, Ay, . . . ),

At = Φ2(V,A, Vx, Ax, Vy, Ay, . . . )

for all smooth (complex) coefficients V (x, y, t), A(x, y, t).
The equation (10) looks like Lax equation on the set of all solutions of (12):

(12) ĤΨ = 0 ↔

(
dĤ

dt
− [Ĥ, B]

)
Ψ = 0.

The periodic inverse spectral problem for two-dimensional Schrödinger operator (1)
based on the spectral data corresponding to one fixed energy level ε = ε0, was posed
and considered by B.A. Dubrovin, I.M. Krichver and S.P. Novikov in [3], [4]. It was
solved in [3] for a certain class of “algebraic” operators the two-dimensional analog
of the well known “finite-zone” operators on the given level ε = ε0—see §1. Some
nontrivial sufficient “reality” conditions (such that Ĥ is self-adjoint but A 6= 0)
were noneffectively found by I.V. Cherednic in [5].

Problem. Which spectral data in [3] provide the real “purely potential” operators
(13)? The class (13) is most important (see the end of §1):

(13) A ≡ 0, Ĥ = ∂∂̄ + V (x, y), V ∈ R.

This problem was partialy solved in the recent papers of S.P. Novikov and
A.P. Veselov ([6], [7], [8]) in terms of the Riemann surfaces with some group of
involutions and corresponding Prim’s θ-functions—see §2.

P.G. Grinevitch and R.G. Novikov have recently found the analog of these results
for some class of decreasing potentials V → 0, x2 + y2 → ∞ using the technique
of S.V. Manakov (“nonlocal Riemann problem”—see [9]). But the conjecture of
S.P. Novikov (below) is probably untrue for this class; it is probably not dense in
the class of all smooth rapidly decreasing potentials.

The deformations (10) preserving a class of the purely potential self-adjoint op-
erators (13) were found and studied in ???. The simplest and important example
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is

(14)

dĤ

dt
= [Ĥ, B] + fĤ,

Ĥ = ∂∂̄ + V, B = D + D̄, D = ∂3 + u∂,

Vt = (∂3 + ∂̄3)V + ∂(uV ) + ∂̄(ūV ),

∂̄u = 3∂V, f = ∂u+ ∂̄ū.

It is possible to exploit (14) for the effectivization of θ-functional formulas for Ĥ
(and also for the recognition of Prym’s θ-functions, like in [9] for the Jacobian
varieties. This program was developed recently by I.A. Taimanov. Some results see
in §3).

The last §4 contains a difference analog of the previous theory. There is a special
class of the difference operators, whose spectral properties are in some natural sense
analogous to the properties of continuous purely potential operators (13). The
results of §4 were obtained recently by I.M. Krichever. They may be very useful
for the proving of the following conjecture 1.

Conjectures (S.P. Novikov). 1) The algebraic (rank ` = 1) operators Ĥ corre-
sponding to one energy level generate a dense family among all the smooth real,
purely potential periodic operators for n = 2.

2) All such algebraic operators have the spectral data described in [7] (the anal-
ogous problem is not solved for KP either).

3) Formula (37) determines the solutions of the equation (36), j = 1, iff Bµν

is the Riemann’s matrix of some admissible Prym’s variety and ~U1, ~U2, ~W are the
periods of corresponding differential forms. (The constant c and components Wj

are the functions of Bµν , ~U1, ~U2—see the end of §3).

1. Two-Dimensional Algebraic Operators. Spectral Data and
Inverse Problem

First recall some definitions.

Definition 1. Two-dimensional P.D.O. L1 is algebraic iff there are nontrivial
P.D.O.’s L2, L3, Bij such that (15) is true

(15) [Li, Lj ] = BijL1, i, j = 1, 2, 3.

General properties of algebraic operators:
1. There is a polynomial P (λ, µ) such that

(16) L1Ψ = 0 ⇒ P (L2, L3)Ψ = 0.

2. Common eigenfunction Ψ(x, y, λ, µ)

(17) L1Ψ = 0, L2Ψ = λΨ, L3Ψ = µΨ

is meromorphic on the Riemann surface Γ; see its analytical properties below:

(18)
P (λ, µ) = 0, (λ, µ) = Q ∈ Γ,

Ψ(x, y, λ, µ) = Ψ(x, y,Q).

Definition 2. Rank of an algebraic operator L1 is the dimension of the space
Ψ(x, y,Q) in a “general” point Q ∈ Γ.
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We shall discuss in this work only the algebraic operator of rank ` = 1. See the
general theory ` > 1 in [10].

Suppose that Γ is nonsingular and rank ` = 1. The analytical properties of
algebraic Schrödinger operator (1), were described in [7]:

1. The common normalized eigenfunction Ψ(x, y,Q), ĤΨ = 0, Ψ(0, 0, Q) ≡ 1,
Q ∈ Γ is meromorphic on Γ \ (P1 ∪P2); the points P1 6= P2 ∈ Γ are some “infinite”
points with local parameters k−1

1 = w1, k−1
2 = w2, Ki(Q) →∞, Q→ Pi, i = 1, 2.

2. In general Ψ has g different poles Q1, . . . , Qg, whose position is independent
of (x, y); g = g(Γ) is the genus of Γ.

3. Ψ has the asymptotic (19):

(19)

Q→ P1, Ψ(x, y,Q) = 1(x, y)`k1z

(
1 +

∑
i>1

ηiw
i
1

)
,

Q→ P2, Ψ(x, y,Q) = 2(x, y)`k2z̄

(
1 +

∑
i>1

ξiw
i
2

)
,

z = x+ iy, z̄ = x− iy.

Definition 3. The set of quantities (Γ, P1, P2, k1, k2, Q1, . . . , Qg) with the prop-
erties 1–3, mentioned above are “spectral data” for generic algebraic Schrödinger
operator L = Ĥ of the general form (1) for n = 2 and rank ` = 1.

Theorem 1. Any spectral data (Γ, P1, P2, k1, k2, Q1, . . . , Qg) for nonsingular sur-
face Γ with the genus g(Γ) = g, generic divisor D = Q1 + · · ·+Qg, any two points
P1 6= P2 and k1, k2 local parameters determine the unique function Ψ(x, y,Q) and
Schrödinger operator Ĥ such that

c1 ≡ 1, Ĥ = ∂∂̄ +A∂̄ + V,

ĤΨ ≡ 0, A = −∂ ln c2, V = −∂η1
∂z

.

The coefficients of Ĥ are complex, periodic or quasi-periodic (with 2g quasi-periods)
functions on (x, y):
(20)
V = ∂∂̄ ln θ(U1z+U2z̄+ζ0 +A(P1)),

A = −∂ ln
θ(U1z+U2z̄+ζ0 +A(P2))
θ(U1z+U2z̄+ζ0 +A(P1))

,

Ψ =
θ(A(P )+zU1 + z̄U2 +ζ0)θ(A(P1)+ζ0)
θ(A(P )+ζ0)θ(A(P1)+zU1 + z̄U2 +ζ0)

exp

(
z

(∫ P

P0

Ω1−α

)
+ z̄
∫ P

P1

Ω2

)
.

Changes of local parameters w1 = aw′1 + . . . , w2 = bw′2 + . . . leads only to the
linear transformation

Ĥ → Ĥ ′ = a−1b−1(∂′∂̄′ +A′∂̄′ + V ′(z′, z̄′)),

z = az′, z̄ = bz̄′, A′ = aA(az′, bz̄′), V ′ = abV (az′, bz̄′).

For the self-adjoint operators Ĥ with periodic coefficients A, V a function Ψ is a
Bloch’s function corresponding to the: zero-energy level.

Here (aj , bj) is canonic basis of Ĥ(Γ,Z), ω̂1, . . . , ω̂g—the basis of the holomorphic
forms on Γ and Ω1,Ω2 are the meromorphic forms with the poles only in P1, P2
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respectively such that

(21)

ai ◦ aj = bi ◦ bj = 0, ai ◦ bj = δij ;∮
ak

ω̂j = 2πiδjk,

∮
bk

ω̂ν = B̂µν = B̂νµ,

∮
ak

Ωα = 0,

Ωα = −w−2
α dwα(1 + reg.), α = 1, 2, U j

α =
∮

bj

Ωα,

θ̂(η1, . . . , ηg) = θ̂

[
0
0

]
(η1, . . . , ηg),

θ̂

[
α

β

]
(η1, . . . , ηg) =

∑
N∈Zg

exp
{

1
2
〈B̂(N + α), N + α〉+ 〈η + 2πiβ,N + α〉

}
,

A : Γ → J(Γ) is the “Abel map”:

A(P )i =
∫ P

P0

ω̂i (i = 1, . . . , g),

α is constant, which determines from the property(∫ P

P0

Ω1 − α

)
= w−1

1 +O(w1).

The important problem is: for which spectral data the corresponding operators
have A ≡ 0̄ and V real and smooth. It will be discussed in §2.

There is an important class of two-dimensional operators in the external periodic
(or constant) magnetic field H(α, y) and the electric lattice potential V (x, y):

(22)
Ĥ = ∂∂̄ +A∂ + V, V (x+ T1, y) = V (x, T2 + y) = V (x, y),

H(x, y) = ∂̄A(x, y) = H(x+ T1, y) = H(x, y + T2).

For the operators (22) we have periodic fields, but nonperiodic operators. This
class is not contained in our theory. Its mathematical theory is quite different—see
[11]. Our theory considers only the case in which the average magnetic field H̄
(or the magnetic “flux”) is trivial—“topologically trivial” magnetic fields as the
cohomology classes on the torus T 2. In this case “physical” magnetic fields are
usually identically zero in the real crystals. So the most important case in our
theory is A ≡ 0 (§2).

2. Schrödinger Operators with the Zero Magnetic Field. Prym’s
θ-Functions

Simplest examples of the algebraic purely potential operators are (23)

(23) Ĥ = ∂∂̄ + V (x, y), V (x, y) = V1(x) + V2(y)

(here the operators H1 = ∂2
x + V1(x) and H2 = ∂2

y + V (y) are “finite-zoned” or
“finite-gap” 1-dimensional operators). The operators (23) are algebraic, corre-
sponding to any level the last property of (23) makes an exception—see §3.

Theorem 2. 1) Any spectral data of the theorem 1, satisfying the following condi-
tions a), b), give purely potential Schrödinger operators Ĥ = ∂∂̄ + V (x, y):

a) the nonsingular surface Γ has an involution

σ : Γ → Γ, σ2 = 1
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such that

(24) σ(P1) = P1, σ(P2) = P2, σ(kα) = −kα (α = 1, 2)

b) the divisor of poles D = Q1 + · · ·+Qg satisfices the relationship

(25) D + σ(D) ∼= K + P1 + P2.

Here K is the canonical divisor (a divisor of differential forms) and ∼= means the
so-called “linear equivalence” of the divisors.

2) The potential V is real if specral data have the following properties:
c) There is an anti-involution τ

τ : Γ → Γ

such that the pair (σ, τ) generates the group Z2 × Z2

(26) τ2 = 1, τσ = στ, τ(P1) = P2, τ(k1) = k̄2

and the divisor D is τ -invariant :

(27) τ(D) = D

Remark. I. Shafarevitch and V. Shockurov explained to us that (25) is solvable
iff the involution σ has exactly 2 fixed points P1, P2—see ???.

Choose the canonical basis (21) aj , bj ∈ H1(Γ), j = 1, . . . , g = 2g0 the basis of
holomorphic differential 1-forms ω̂j , and the meromorphic differentials Ωα, α = 1, 2
with the properties (23), (28):

(28) σ(ai) = ai+g0 , σ(bi) = bi+g0 , i = 1, . . . , g0.

Definition 4. The Prym differentials ω are meromorphic differentials on Γ such
that

σ∗ω = −ω.

We can construct the basis of the holomorphic Prym differentials from (28)

(29)
ω1, . . . , ωg0 , ωi = ω̂i − ω̂i+g0 ,∮

ak

ωj = δkj , Bkj =
∮

bk

ωj = Bjk.

The lattice (29) determines some abelian variety P (Γ, σ) (“Prym variety”) and the
θ-functions (30), which depend on g0 variables: θ(η1, . . . , ηg0) = θ

[
0
0

]
(η1, . . . , ηg0),

(30) θ

[
α

β

]
(η1, . . . , ηg0) =

∑
N∈Zg0

exp
{

1
2
〈B(N + α), N + α〉+ 〈η + 2πiβ,N + α〉

}
Both the meromorphic differentials Ωα (see theorem 2) are the Prym differentials

σ∗Ωα = −Ωα.

Any meromorphic differential form Ω(k)
α which has only one pole Pα and property

(31) is the Prym differential:

(31)

∮
aj

Ω(k)
α = 0, j = 1, . . . , 2g0,

Ω(k)
α = w2k

α dwα(1 + reg.), σ∗Ω(k)
α = −Ω(k)

α ,

Ω(1)
α = Ωα, σ∗wα = −wα.
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We have a collection of g0-vectors ~U (k)
α

(32)
U

(k)
αj =

∮
bj

Ω(k)
α , α = 1, 2; k = 1, 2, . . . , j = 1, 2, . . . , g0,

~U (1)
α = ~Uα.

Theorem 3. Coefficients and eigenfunctions of the Schrödinger operators from
theorem 2 may be written by the following formulas in Prym’s θ-functions:
(33)

V (x, y) = 2∂∂̄ ln θ(~U1z + ~U2z̄ + ~ζ0) + c(Γ, σ),

Ψ(x, y, P ) =
θ(η(P ) + zU1 + z̄U2 + ζ0)θ(ζ0)
θ(η(P ) + ζ0)θ(zU1 + z̄U2 + ζ0)

exp

[
z

(∫ P

P0

Ω1 − α

)
+ z̄

∫ P

P1

Ω2

]
,

η(P )i =
∫ P

P1

ωi (i = 1, . . . , g0), ĤΨ = 0.

The constant g0-vector ζ0 depends only on the divisor D. For the real potentials
V (x, y) we have a factor-surface Γ0 with the anti-involution τ0 induced by τ :

Γ0 = Γ/σ, τ0 : Γ0 → Γ0, τ2
0 = 1, τ0(P1) = P2.

The genus g(Γ0) is equal to g0 = g/2. In the general case the anti-involution τ0 has
q smooth fixed ovals Si:

S1, . . . , Sq ⊂ Γ0, τ |Sj
≡ 1, j = 1, . . . , q 6 g0 + 1, Si ∩ Sj = ∅.

By definition, the so-called “M -curves” (Γ0, τ0) have exactly the maximal possible
number of ovals, q = g0 + 1.

Conjecture. Formula (33) gives the real smooth algebraic potential V (x, y) only
if θ is the θ-function of some Prym variety P (Γ, σ); ~U1, ~U2—the vectors of the b-
periods of the corresponding meromorphic Prym differentials (31) and ζ0—some
admissible constant vector; the set of all admissible constant vectors P 0

R(Γ, σ) ⊂
P (Γ, σ) is always connected and non-empty iff (Γ0, τ0) is the M -curve. The cor-
responding operators are positive only if the conditions of theorem 4, pt. 2, are
satisfied.

Theorem 4. 1). If Q ∈ Γ is such that στ(Q) = Q the Bloch’s function Ψ(x, y,Q)
is bounded for all real x, y ∈ R2

(34) |Ψ(x, y,Q)| < const <∞, στ(Q) = Q

(the fixed ovals of anti-involution στ give a “real Fermi-curve” on the level ε = 0).
2) Suppose that the pair (Γ0, τ0) is M -curve, στ has exactly 2g0 + 1 ovals

(a′1, . . . , a
′
g0
, a′′1 , . . . , a

′′
g0
, b) such that for D = Q1 + · · ·+Qg, g = 2g0, we have

(35) στ(a′j) = a′′j , στ(b) = b, Qj ∈ a′j , Qg0+j ∈ a′′j , j = 1, . . . , g0.

In this case the operator Ĥ = ∂∂̄ + V is positive Ĥ > 0.

Conjecture. Suppose, that στ has no fixed points and τ has exactly d+ 2` ovals
(b1, . . . , bd, a′1, a

′′
1 , . . . , a

′
`, a

′′
` ) such that στ(b′j) = bj , στ(a′q) = a′′q . The number of

different dispersion relations εj(p1, p2) (less than zero) is at least S:

d ≡ 1 (mod 2), εj(p1, p2) < 0,

S > (d− 1)/2, j = 1, . . . , S.
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Of special interest is the degenerate case in theorem 4, pt. 2. Suppose that we have
a family of data (Γ(λ), . . . ) such that:

Γ(λ) → Γ(λ0) = Γ̄, λ→ λ0,

b→ point Q0 ∈ Γ̄.

In this case we obtain so-called “ground state” ε = 0

(Ĥϕ, ϕ) > 0, ϕ ∈ L2(R2), ĤΨ(x, y,Q0) = 0.

The Prym’s variety of limiting singular curve Γ̄ with an involution is nonsingular;
the corresponding Prym’s θ-functions are also nonsingular. Adequate formulas for
the ground-state eigenfunction Ψ may be found in [6].

3. Nonlinear Equations as the Deformations of Two-Dimensional
Schrödinger Operator

General Schrödinger operator (1) for n = 2 has a number of deformations (10).
The first examples were found in [6], [8]. The “hierarchy” of all such deformations
with multiparametric ψ-function may be easily deduced from:

The function ψ = ψ(x, y, t′2, t
′′
2 , . . . , t

′
i, t

′′
i ) has the analytical properties like in §1,

but the pt. 1 is replaced by 1′:
1′. ψ has the asymptotic (14′)

(14′)

Q→ P1, ψ = C1(x, y)`k1z+
P

i>2 ki
1t′i

(
1 +

∑
i>1

ηiw
i
1

)
,

Q→ P2, ψ = C2(x, y)`k2z+
P

i>2 ki
2t′′i

(
1 +

∑
i>1

ξiw
i
2

)
.

General formulas for A(x, y, t′, t′′) and V (x, y, t′, t′′) may be obtained trivially from
(20) by putting additional terms in the argument of (20); these terms are linearly
dependent on all t′i, t

′′
i .

The deformations of purely potential operators were first considered in ???:

Theorem 5. Any deformation (14′) such that t′2i = t′′2i = 0 preserves the class of
purely potential operators (C1 = 1, C2 constant). The deformation preserves the
“reality” property if t′2j = t′′2j+1 ∈ R. The latter deformations have the form

(36)

∂Ĥ

∂t2j+1
= [H̄, ajDj + ājD̄j ] + CjĤ, ajt2j+1 = t′2j+1 = t̄′′2j+1,

Ĥ = ∂∂̄ + V, Dj = ∂2j+1 + u
(j)
1 ∂2j−1 + . . . , aj ∈ C,

D1 = ∂3 + u1∂, C1 = a1∂u1 + ā1∂̄u1,

D0 = ∂, C0 = 0.

According to the natural variant of the so-called “Novikov conjecture” formula (37)
satisfies (36) for j = 1 iff it corresponds to some pair (Γ, σ) (it corresponds to some
triple (Γ, σ, τ) in the real case—see also §2):

(37)
V (x, y, t) = 2∂∂̄ ln θ(U1z + U2z̄ +Wt+ ξ0) + c,

c = const, a1 = 1, t1 = t, W = U
(2)
1 + U

(2)
2 .
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Definition 5. We call g0 × g0 matrix Bµν “generic” if the rank of the matrix

(θ̃11[n], θ̃12[n], . . . , θ̃g0g0 [n], θ̃[n])

is equal to g0(g0+1)
2 + 1.

Here θ̃ij [n] = ∂i∂jθ
[
n
0

]
(w)|w=0, n ∈ Zg0

2 and θ̃ is θ-function corresponding to the
Riemann matrix 2B.

Theorem 6 (I.A. Taimanov). Suppose that matrix Bµν is generic and the g0-
vectors U1, U2 are linearly independent. If formula (37) satisfies the equation (36)
for j = 1, then vector W and constant c may by calculated as the functions of
U1, U2, Bµν . For g0 = 2 any generic matrix Bµν and independent vectors U1, U2

give the algebraic purely potential Schrödinger operator and the solution of (36) for
j = 1, aj = 1, using the formulas for c,W .

The structure of exact formulas for c(U1, U2, Bµν) contains very interesting in-
formation on some identifies between the θ-constants.

4. Two-Dimensional Periodic Difference Operators

In this paragraph we shall consider the difference analog of the two-dimensional
Schrödinger operator

(38) LΨn,m = anmΨn+1,m + an−1,mΨn−1,m + bnmΨn,m+1 + bn,m−1Ψn,m−1.

In one-dimensional case such “symmetric” version of the difference Schrödinger
operator has been used in [??] for the integration of the difference KdV equation.

Consideration of the difference operators allows us to obtain not only the differ-
ence analog of the results presented in the previous paragraphs of this work, but,
which is still more important, to construct for these operators the direct algebraic
transformation which is connected to one energy level. This means the construction
of the Riemann surface and the other data on it, which are the starting point for
the solution of the inverse problem.

These investigations have been for the first time made in for the non-selfadjoint
operator

(39) LΨnm = Ψn+1,m+1 + anmΨn+1,m + bnmΨn,m+1 + cnmΨnm.

It has been shown, that the operators, which may be naturaly called “finite-gap on
the one energy level”, have non-zero co-dimension (growing with the periods of the
operators) in the space of all periodic operators. It was shown, that eigenfunction
of the generic operators has some unexpected analytical properties. The continual
limit of such operators has not been yet clarified.

These results do not contradict, of course, the conjecture, which was formulated
in [6] and contained in §1, because the continual limit of (39) includes the operators
H (1) with non-zero magnetic field.

Operator (38) seem to reflect adequately the principal properties of the purely
potential Schrödinger operators. It will be shown below, that all the periodic op-
erators of the form (38) are in some sense “the finite-gap” on the zero energy level.

Let’s define, as usual, the variety of the Bloch’s functions for the operator L of
the form (38) with the periodic coefficients

(40) an+2N,m = an,m+2M = an,m; bnm = bn+2N,m = bn,m+2M .
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Consider the finite-dimensional linear operator L(w1, w2), which is the restriction
of the operator L on the space of the eigenfunctions of the monodromy operators:

(41) Ψn+2N,m = w1Ψn,m, Ψn,m+2M = w2Ψn,m.

Bloch’s eigenfunctions of the operator Ψ are the meromorphic functions on the
variety M2, which is determined in ???? by the equation

(42) Q(E,w1, w2) = det(L(w1, w2)− E 1) = 0.

Below we shall consider on this variety only the complex algebraic curve corre-
sponding to the zero energy level (furthermore, for our construction we need only
“half” of this curve).

The zero energy level of the operator L is fixed by the following property. Let’s
denote by Φ± the subspace of such functions, that Ψn,m = 0 if the difference n−m
is odd (even). The operator L maps these subspaces such that

(43) L : Φ± → Φ∓.

That’s why the curve Γ0 ⊂M2 of the Bloch’s solutions of the

(44) LΨn,m = 0

is the union of two curves Γ±0 corresponding to the decomposition of the polynomial

D(w1, w2) = detL(w1, w2) = Q+(w1, w2)Q−(w1, w2) = 0.

To each point of the curves Γ±0 correspond the Bloch’s solutions of the (44) which
belong to the Φ±. The function Ψ±

n,m(P ) , P ∈ Γ±0 will be meromorphic on Γ±0 for
all n,m if we normalize these solutions by the conditions Ψ+

0,0 ≡ 1 and Ψ−
0,1 ≡ 1.

Let’s set for each operator L of the form (38) with periodic coefficients, the
following “algebro-geometric” data:

(45) L→ (Γ+
0 ,D+ = {Q1, . . . , Qg}).

Here D+ is the divisor of the poles Qs of the functions Ψ+
n,m on Γ+

0 , which differ
from the “infinite” points P ε1ε2 ∈ Γ+

0 , εi = ±1. The points P ε1ε2 are the poles of
the functions wεi

i .
There exist two types of transformations of the operator which preserve the

data (45). They are defined by functions g+
n,m ∈ H±. The first transformation

corresponds to the multiplication of each equation (44) (i.e. for each pair n,m with
odd difference) by the g−n,m:

(46)
if n−m ≡ 1 (mod 2), then an,m → an,mg

−
n,m, bn,m → bn,mg

−
n,m

if n−m ≡ 0 (mod 2), then an,m → an,mg
−
n+1,m, bn,m → bn,mg

−
n,m+1

The second transformation corresponds to the multiplication Ψ+
n,m → g+

n,mΨ+
n,m:

(47)
if n−m is even, then an,m → an,mg

+
n,m, bn,m → bn,mg

+
n,m

if n−m is odd, then an,m → an,mg
+
n,m+1, bn,m → bn,mg

+
n+1,m

Consider the inverse transformation, which reconstructs the operator from the
data (45). The operator L corresponding to these data is unique up to the accuracy
of transformations (46), (47). As usual, this construction gives exact formulae for
Bloch’s functions Ψ+

n,m.
Let Γ be the algebraic curve of the genus g with fixed points P ε1,ε2 , εi = ±1,

i = 1, 2. Consider the function Ψn,m(P ), which is meromorphic on Γ. The poles
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of this function on Γ \ P ε1,ε2 are Q1, . . . , Qg. In the neighbourhood of the point
P ε1,ε2 the function

(48) Ψn,m(P )k
−ε1n−ε2m

2

is regular, where k−1(P ) = k−1
ε1,ε2

(P ) is the local parameter in this neighbourhood.
According to the Riemann–Roch theorem the dimension of the linear space of

such functions for arbitrary set Q1, . . . , Qg in general position equals one.

Lemma 1. Any function with analytical properties outlined above has the following
representation Ψn,m(P ) = g+

n,mΨ̃n,m(P ), where Ψ̃n,m(P ) is given by the formula:

(49) Ψ̃n,m = exp

(
n+m

2

∫ P

P0

Ω1 +
n−m

2

∫ P

P0

Ω2

)
θ(A(P ) + U1n+ U2m+ Z)

θ(A(P ) + Z)
.

Here Ω1 is the normalized differential on Γ of the third kind with the simple poles
in the points P 1,1 and P−1,−1. The residues in this points are equal to +1 or
−1 respectively. The differential Ω2 is of the same type but has the poles in the
points P+1,−1 and P−1,+1. The components of the vectors U1 and U2 are equal to
U1k = 1

2

∮
bk

(Ω1 + Ω2), U2k = 1
2

∮
bk

(Ω1 − Ω2).
The vector Z equals (after the shift on the vector of the Riemann constants) the

image of the divisor D+ = {Q1, . . . , Qg} under the Abel’s transformation.

Theorem 7. Let be Ψn,m(P ) be the same as in the previous lemma. Then there
exists such an operator L, that the equation (44) is valid. This operator is unique
up to accuracy of transformations of the (46) type and its coefficients are produced
by the transformation (47) from the coefficients of the operator (which corresponds
to the Ψ̃n,m(P ))
(50)

ãnm = θ−1(A(P 1,1) + U1(n+ 1) + U2(m) + ζ0),

b̃nm = −θ−1(A(P 1,1) + U1n+ U2(m+ 1) + ζ0)
n−m ≡ 1 (mod 2),

ãnm =
θ(A(P−1,1) + U1(n+ 1) + U2(m+ 1) + ζ0)

θ(A(P 1,1) + U1(n+ 1) + ζ0)θ(A(P−1,1) + U1n+ U2m+ ζ0)
,

b̃nm =
θ(A(P 1,−1) + U1(n+ 1) + U2(m+ 1) + ζ0)

θ(A(P 1,1) + U1(n+ 1) + U2(m+ 1) + ζ0)θ(A(P 1,−1) + U1n+ U2m+ ζ0)
,

n−m ≡ 0 (mod 2),

If there exists such an anti-involution τ of Γ, that the points P ε1,ε2 are stationary
and τ(D) = D, then the coefficients of L are real. If Γ is the M -curve with fixed
ovals a1, . . . , ag+1 and the points Qs belong to as and P ε1,ε2 belong to ag+1 then
the coefficients of the L have no singularities.

In the general case the coefficients of L are quasiperiodic functions as it follows
from (50).

Theorem 8. The operator L, which is given by the theorem 7, is periodic iff the
curve Γ is determined by the following equation:

(51) Q(w1, w2) = wM
1 + c1w

−M
1 + c2w

N
2 + c3w

−N
2 +

∑
N |i|+M |j|<MN

aijw
i
1w

j
2 = 0,

and the points P ε1,ε2 are those four points, which comactify affine curve (51). This
construction provides all generic operators of the form (38) with the periods 2N, 2M
if N and M are relatively prime.
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The proof of the latter statement follows from the comparision of the number
of parameters of this construction and the number of the periodic operators (38).
As it was mentioned above we consider those operators up to the accuracy of
transformations (46), (47). Recall that parameters of construction are coefficients
aij , c1, c2, c3 in the equation (51) and the points Qs. The number of those points
equals the genus of the curve Γ which in its turn in the general position equals MN .

In conclusion we must mention that the variety of the Bloch’s functions of L is
invariant under the involution

σ : (w1, w2, E) → (w−1
1 , w−1

2 , E).

This involution may be naturaly constrained on each curve Γε corresponding to the
fixed energy level E = ε. (In the continual limit in which the points P 1,1, P−1,−1

and also P 1,−1, P−1,1 coincide, this involution a will evolve into the involution with
the properties, which were described in §2).

The involution σ at the zero energy level transforms the components of Γ into
one another

σ0 : Γ±0 → Γ∓0 .
Unfortunately, we have not yet obtained any effective construction which would

allow us to reconstruct Ψ−
n,m(P ) from the data (45) (the existence of such construc-

tion follows from the previous results).
The operators for which the corresponding curve Γ+ is invariant for the involu-

tion σ (i.e. the polynomial (51) is invariant under the transformation (w1, w2) →
(w−1

1 , w−1
2 )) and the divisor D+ satisfies the condition

D+ + σ(D+) ' K + P 1,1 + P 1,−1

have very interesting properties. In the next paper we shall consider this class of
the operators in detail.
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