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Lecture 1. Introduction: Textbooks and Gen-
eral Remarks. Local coordinates: What is
Cartesian system of coordinates. Examples.

Textbooks:
Manfredo P. do Carmo. Riemannian Geometry.
Victor Guillemin, Alan Pollack. Differential Topology.

Additional Literature:

J. Milnor. Morse Theory.

S.P. Novikov, I.A. Taimanov. Modern Geometric Structures And Fields.
B.A. Dubrovin, A.T. Fomenko, S.P. Novikov. Modern Geometry - Methods
and Applications: Parts I, 1I.

Differential Manifolds, definition, maps, submanifolds.
Language of general topology is necessary: spaces, continuous maps,
homeomorphisms, compactness, metric and Hausdorff spaces.
Basic Tools from multivariable calculus: Implicit Functions, Approxi-
mations and Transversality. Theorems will be stated (but without proof).
Knowledge of Linear Algebra is necessary.
In Riemannian Geometry some theorems from ODE courses will
be needed.
Our theory is C*°: - manifolds, maps, .... Why?
The “physical” metric in the 4-space-time is NOT RIEMANNIAN.
Why do we need Riemannian metrics?
Concerning Differential Topology: Why do we need Approximations and
Transversality?
What is MANIFOLD?

Definition: manifold is a Hausdorff (or metric) space locally homeomor-
phic to an open domain in R”.

R™ is an n-manifold.

Open domain U C R" is a manifold.
What is a coordinate system?

a) Every coordinate is a continuous function on the space X

f: X =R



b) Collection of functions fi,..., f,
fj X >R

gives a coordinate system if for every point x € X we have

— —

fle)=fly) —» ==y

—

where f(l’) = gfl(x)7 ) fn(x))

Map z — f(z) gives homeomorphism of X into some open domain U C
R™.

Examples.

1)X:R27 flzxa f2:y
2) X =R fi=p=ya>+y’ fr=¢p.
a) p is not a coordinate in R? m

but p is a coordinate in R*\0 = X’
b) ¢ is not a coordinate in R*\0 because ¢ is not a function, it is

multivalued. )
“Cartesian Coordinates” in R"

R™ « (2',...,2")

points — one-to-one with n-tuples (z,..., z").

“Cartesian Coordinates” in open set U C R".

Manifold = Metric space M™ locally homeomorphic to open domains in
R"™ < for every point x € M"™ there exists an open set x € U C M™ such
that local coordinates (Cartesian) are given in U

U — R"

z — (z(z),...,2"(z)) = T(z)

2?7 : U — R are continuous functions (one-valued!)

() =2(y) < z=y



Lecture 2. Manifolds and Atlases.

Manifolds: = Hausdorff (or metric) spaces such that they are “locally
euclidean”: for every x € M there exists an open set + € U with homeo-
morphism

ov : U — R"=(z',...,2") (so UCR")

The set U represents a “Chart” in the “Atlas” on M. “Local coordinates”
in U (near x)
r — R" — R

Tt

are continuous functions in U and
(z) = Z(y) < ==y

for any two points z, y in U.

For a given “Atlas” {U,}, covering M, we can introduce “Transition
Maps” in the intersections U NV, where U = U,, V = Ug. Thus, for
any z € U NV we can use the local coordinates (x!,. :p") (fa in U)

or (y',...,y") (s in V). The functions z'(y',...,y") and y*(zt, . an)
represent maps of euclidean domains

Definition. Manifold M is C* if all the functions z’(y) (given by Atlas for

every pair U, V') are C*°.

Statement. In the C* Atlas all Jacobians det |0z'/9y*| are non-zero.
Proof. Since (%) and (&) are both C* we have det |02 /0y*| # 0.

Z@x oyt 5
oy Oz %;

Summation agreement: we do not write ), so, in our notations

9" Oy" _

oyk oxi Y
Definition: Oriented Atlas is such that all det |9z/9y*| > 0
Oriented manifold: = there exists an oriented Atlas.
Examples:



n=2:

S? is oriented manifold.

RP? is NOT.

(z,—r) is one point in RP?.
Definitions.

1) C* - function in C*° - manifold M with given Atlas of Charts:
M — R is C*° in every Chart.
2) C*° - map

M 5 N

(Ua) (Vs)

is C*° in every Chart. In other words, for every pair U,, V3 the corresponding
functions y§(z}, ..., z%) are C in F~'(Vz) N U,.

Rank of the map F': M — N at the point z € M:

8y§
k., [ = rk :
r r < D

Statement. Rank of the map at the point = does not depend on the choice
of Atlas.

Proof. Let U,, V3 be Euclidean domains giving the charts of the manifolds
M and N and the functions (&) be represented by the map

where

x

Consider two other domains W, and Xz with coordinates z and ¥ repre-
senting two other charts containing the points  and F(z) respectively. Let
us consider the functions §(Z) = g(y(x(Z))) defined by the map

w, — U, E) VB — Xﬁ
(Z) (z) (v) ()
We have , ,
oyt Oy oy* Ox*
0% Oy* Oxs 0xF
where 1k |07 /0y*| # 0, rk|0z°/0F7| # 0.




Conclusion

oy
oz

oy

k :
: oxJ

=T

Statement is proved.
Special Case: M 5 R (function).
tk, f = 1 — regular point (Vf|, #0)
rk, f = 0 — critical point (Vf|, =0)
Example: f = 2?+y* (z,y) # (0,0) - regular point, (0,0) - critical point.

Statement. Every local coordinate x’ in the Atlas of Charts for C*™ -
manifold M = UU, is such that all the points in the Chart U, are regular
for 2% : U, — R.
Proof. In the coordinate system 7, in the Chart U, we have Vz! =
0,...,1,0,...,0) # 0.
Statement is proved.

“Good Double Atlas” (GDA):
M = Uy,U, = U, V,

where U, C V, and there are common coordinates 7, for every U,, V, such
that the corresponding domains U,, V, in the Euclidean space are defined
by the relations:

\%

Lemma. For every compact manifold M there exists a GDA.
Proof (for compact M). For every point = € M we can obviously choose
“small balls” U,, V,, z € U, C V, with the required local coordinates.
After that we chose a finite cover of M which gives the required GDA.
Lemma is proved.

Choose a C* - function ¢(r), 7% = 3. [27|*, such that:



@ =0 forr <0,

14-eeneees 60
p=1forr <1, N

p =0 forr>2 \‘\
¢ <0forl<r<2.

[ ]
.

ro2
Consider O - functions on the manifold M with GDA:
T = =

plra)at , 1o =) ()’

J
We have: 7/ =z for r, <1,and 7/ =0 for r, > 2 (i.e. outside V).

Theorem. Let a compact manifold M"™ with GDA (finite) be given
MTL

%U...UVQ

Consider the coordinates Z, (r, < 1in U, and r, < 2 in V,) and the
corresponding functions ¢(r,) and z‘, on M".

Then the map F: M™ - RN, N=Q(n+1):

F(ZE) [f%,...,f?,g@(’f’l), e

. ib, TG, go(rQ)}
is a C*° imbedding (nondegenerate).
Terminology:
Imbedding: = rk,F' = n at every point x and F(z) = F(y) - v =1y
Immersion: = rk,F' = n = dim M at every point x € M.
rky=0
- - M 1 RZ
imbedding

immersion
Proof of the Theorem.

I. Let z € U,, then rk FF = n because

io=a' for v elU,, F =

)
o

~1 N
[...,Ia,...,l’

a,...} , and rk

=N

oxl
(unit matrix in U,).
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II. Suppose = # y. Can we still have F(z) = F(y) ?
a) Let x,y € U, then F(x)# F(y) by the same reason as in L.
b) Let © € Uy, y € Vo, (ro > 1). Then ¢(r4)|: = 1, ¢(ra)|y < 1, so
F(z) # F(y),
F = [ LT T o), }

c) Let = € U,, and y is outside V,. Then ¢(ry)l. =1, ¢(ra)|y = 0, so
F(x) # F(y).

Theorem is proved.

Lecture 3. (C°-manifolds, Atlases, Charts.
Especially good Atlases. Implicit functions
and Inversion. Imbedding of Compact Man-
ifolds in R" . Immersions.

Partition of Unity.
Let

Q
Va(x) = ¢(ra) ng(rﬁ)
5=1

We can easily see the that all the functions v, (x) represent C'™ - functions
on M with the following properties

Yalz) >0, ) tal(z)

Example of Application.
What is an Integral on a Manifold?

- f oo

(d"o represents some measure on M ).
We can write

I = [0 w@ee = X [ )G

11



We can see now that [ is represented as a sum of ordinary integrals

over local domains where we can also put in local coordinates: d"c =
- 1
Ga(Ty) dzy, . .. dxh.

Tangent vector on a C*° - manifold M = U, (U,, Z,):
a) Vector 7 is attached to a point = € M.
b) Vector 7 is characterized by “components” /
(1,...,7") in the given system of local coordinates. (xL,...x "

X
c) Basic vectors e; in the coordinate system & are identified with the
operators 0/9z":

0 i
€; - T =T €
oz’
d) The vector 7 is identified with the differential operator 7% 9/dz":
o 72
T T —
ozt
so 7 acts on the functions f(x) at the point x by the formula:
i Of
T(f) = T axl .

(derivative along the vector 7).

For a smooth curve Z(t) = (z'(¢),...,2"(t)) the vector

dx . n
at (#',....a )|x=m(t0)

represents the “speed of particle” at the point ¢ (nothing to do with “rela-
tivistic speed” in the Special Relativity).

T

Change of Coordinates:

Let us make a non-degenerate change of coordinates

ZL’i

oyt YY), i=1,...n,

such that we can write f(Z) = f(Z(¥)) for any smooth function f(Z) near
the point # € M. We say that the sets (7!,...,7") and (7},.

y..., ™) rep-
resent the components of the same vector 7 in the coordinate systems {z'}

and {y'} respectively if we have for any f(z) at the point z:

Lo 08
ox? oy’

12



By definition, we can write

i of _ vy o' Of
oxi oyl Ozt

so we come to the conclusion

Ozt

o= -
oy’

(summation over j is assumed).
In the same way, for the inverse transformation ¢ = ¢(Z) we can write

. ) ayj
™ = ==
ox’
where , .
ox' oy’
oyl dxk — F

Every C* - map is given locally by its linear part and the smaller terms

y' = F'(z',....a") = Const + »_ Alal + O(|z|]*)

j=1
(near 7 = 0).
Inversion of Map (C*).

Let us have a map

F: R — R | To — Yo
(z) ()

given in coordinate form by the functions y* = y'(z!, ..., z").

If we have the relation

y’
det 0
*[onl, #

then there exist open sets V' > zy, U > 1y, and a map

G: R —» R* | Yo — To ,

() ()

13



defined in the set U, such that for x € V, y € U we have the relations
G(F(z)) =z, F(GW) =y

Naturally, we have in this case

oxt| oy’ : . Ox oy
Yo o Yo o
Implicit Functions.
Let us have a coordinate system (y!,...,y""*) in R"™* and a system of
k equations 2! =0, ..., 2F =0, 2/ = 2i(y},...,y"**) with the Condition:

9z
o () = *
(maximal rank).

Statement.
Let us assume that under the above conditions we have the relation

0z
det ((’M’)

det T

#+ 0, j=n+1,....,n+k,

Yo

Jacobi Matrix

—
<
=

¥

07 07" 07" 07

R

nonzero determinant is here Yo

Then:

1) There exists an open set U > yo € R"™* near the point yy, where

the values (y',...,y", 2%, ..., 2") represent a coordinate system;
2) The change

is C*° and nondegenerate.

14



Proof.
Easy to see that the Jacobian Matrix of the transformation F' can be
written in the form:

10 ... 0 9280yt ... 02F/ oy
01 ... 0 azY/0y* ... 02F/0y?
J = 100 1 oY oym ... 9F/oy"
00 ... 0 9zY/ay™*t ... 02F/oynt!
00 ... 0 9zt/oyntk ... 9zF/oymtF

We immediately get then det J,, = detT" # 0. So, we get our statement
from the Inversion Theorem.
Statement is proved.

Under the above conditions, the “Implicit
Function Theorem” states that on the
submanifold, given by the relations z' = 0,

.., 2" =0, the values (y"*',...,y""*) can
be locally expressed as explicit functions of
the coordinates (y!,...,y"):

T (TR T I L R (A T

The Implicit Function Theorem can be considered as a corollary of the
Statement formulated above. Indeed, we have a “local coordinate system”

(yl,...,y”, Zl,...,z”)

near the values Z = 0 in the domain U near the point .
We can then write in this domain for the inverse coordinate transforma-
tion:

y"“:s01(y1,~.-,y",21,.-.,zk), - y”+k:Sﬁk(yl,...,y”,zl,...,zk)

Putting now 2 = 0 we get immediately the statement of the Implicit
Function Theorem.

Another corollary:

15



- ~e Every imbedding of manifold

- ~ .
M — M"E
(z) ()
K Ay’ . locally can be given by k nondegenerate
'K\ 5.4 =N equations z' =0, ..., zF =0.
Zo

Proof. Consider the imbedding M"™ — M"**  given by smooth functions
vy = @ (z',...,2"), i=1,...,n+k, such that

Dy’
Kk —
oy
det
) (ax>
According to the Inversion Theorem, the transformation

('T17""xn’ yn+17"'7yn+k) —> (y17""yn’ yn+17"'7yn+k)

£ 0, i=1,...,n

20

is locally invertible, so we can introduce the new coordinate system

y o= (af. a2yt ,y"”“)
near the point yo = F(x).
The imbedding M™ — M™** can be given now near the point gy, by the
set of equations z' =0, ..., z¥ =0, where

1 n+1

=y —g0n+1($1,...,$n), k ntk

2 =Y _¢n+k($17"'7xn)

We have also

so the values (z%,...,2", 2',... 2¥) give also a local coordinate system in
R
Corollary is proved.

16



Lecture 4. Manifolds and Submanifolds: Im-
plicit functions and Inversion. Vectors and
Covectors.

According to the previous lecture, we can formulate here the following

Statement.
Let us have an imbedding

F: M" — N (tk,F=n,Vz, F(z)# F(y),Vz #y),

such that either M™ is compact or for every compact set X C N the
intersection X N F(M) is compact.

Then:
For every point z € M"™ C N"** there exists local coordinate system
(xt,...,2" 2%, ... 2%) in some U > z such that the submanifold M™ is

given in U by the system

Conclusion.
Every C* - manifold can be given by a set of -
local equations in RY : M™ — R (proved
for compact M™). 2

’

Remark. Not all manifolds can be given by global nondegenerate set of
equations in RY

=0, ... , onon () =0

(Proof later).
RP? can not be given by nondegenerate global set of equations.

“Tangent Manifold” T*(M").
Let us denote again by 7 a tangent vector (71,...,7") in M" attached
to a point = € M™.
‘Tangent Manifold” T*(M"):
M" = U, (Ua, Tl x") (Atlas, C*)

[

17



T"(M™) = U, (Ua xR" zl .. 2, 7'1,...,7”)

[0}

Change of coordinates:

Let us put in the intersection of Charts U, and Usz: o = z,, Yy = 2.
We have then

o= 2'(y) = 2'(y,...,y")  (in UyNUg)
The components of the same vector in the coordinates (z) and (y):

(x,7) < (v, 7)

are connected by the relations:

o= g; (Z is assumed)

J

Covectors (n,...,n,) are attached to the points x € M".
Change of coordinates

(z,n) < (v, )

: 0z’ , Oy

T.(M") = Uy (Usg xR", z}, ... 2l m,.

Scalar product (invariant):

3T

<7-7n> = Ti i

Conclusion: Spaces of vectors and covectors are dual.
Basis:

0
oxt

covectors : ¢ < dzat

vectors: e; <>

Vector field:  f 8i (Vector fields)
I/L

Covector field : g;dz’ (Differential 1 — forms)

18



Vector Fields = Dynamical Systems (Autonomous)
Integration of 1-forms along the path: let

w = gi(r)dx

and the path is given by a piecewise

smooth one-parametric curve /\J\X(ij\

Definition.

L - IR [ (nteton &)

Properties.
Integral does not depend on the choice of coordinates in M"™ and “time”

t.

t —<— OK. Nonmonotonic changes of time
t =1t(t') are also admissible.

>
| v
Inner Product of tangent vectors
gU(.T) Ti 7~'j = <T, 7~'>
Change of coordinates = = z(y):

oz’ O’ ,
9i5(z(y)) o or Irs(Y)

Let Tensor field g;;(z) be symmetric:
95 = g = (7,7) = (T, 7)
We will require also that tensor g;;(x) is nondegenerate.

Under the above conditions we say that g¢;;(x) defines a Pseudoriemannian
Metric on M".

19



Types of inner products (“Types of Geometry”):
gijdr'dz’ > 0 - Riemannian Metric.
Special Types (p, q) of Pseudoriemannian metric:

p=0: - Riemannian

p=1: - Lorentzian

p=gq: - Ultrahyperbolic
Theorem.

In every C'*° - manifold there exists a C"*° Riemannian Metric.
Proof. Take GDA (Good Double Atlas)
M" = U U...UUp = ViU...UVy

(|7l < 1in U, and |Z,| < 2 in V,) and the function ¢(r) introduced in
Lecture 2.

Consider quadratic forms

n

G, = Z (d:f:g)g , o= a2l - p(ry)

i=1

Take Riemannian metric
¢ - Ye.
o

(We assume that every point belongs to finite number of domains V,,).
We claim that it is positive.
Theorem is proved.

Remark.
Lorentzian Nondegenerate Metric does NOT exist in S? (or RP?). [Topol-
ogy claims that Euler characteristics should be 0.]

20



Homework 1.

1. Local coordinates: p and ¢ in R?.

a) Prove that p can not be chosen as a Cartesian coordinate in the
whole domain R?\0 (whole).

b) Prove that ¢ can be defined as a one-valued function in any domain
not containing closed paths surrounding 0 .

Define ¢ in these domains.

2. Spherical coordinates in R*\0

xr = rsinfcosp , y = rsinfsing , 2z = rcosl
r? = 2% 4 y2 + 22
Let r = 1.
N
a) In which domains € is a good Cartesian
coordinate? r=1
b) In which domains (¢, ) are good local
coordinates?
S
3. Construct C* functions
14 1
: o(r) W)
i 0 . -
0 1 r 2 -1
using
0 , z <0
flx) = { e—1/lal? x>0



Lecture 5. Manifolds and vectors fields. Im-
portant Examples.

Classes of manifolds:

a) All C* - manifolds M™ C R¥ for given N.

b) Manifolds defined by the Global Nondegenerate systems of Equations
in RY

f1 :O, cee fN—n :0
(Important cases: n=2, N =n+1=3).

Classification of manifolds:

n=1: St , R
T T
compact noncompact
n=2: compact orientable manifolds are
S?, T2, ..., SZ = O O O o
nonorientable: o
Y X >
RP?= 2 A A Klien
RP? K? (Klein Bottle), other. - K= 4 a Bottle
B -y -
(=x,x)= RP? b

“Connected sum” of previous manifolds:

RP? 4 RP?# ... #RP? \_/
2 2 2 Ml M2
K> = RP?#RP /_\ My # M,

Noncompact 2 - manifolds.

Important manifolds:
RP" - real projective spaces
CP" - complex projective spaces

22



QP" - “quaternionic” projective spaces

Groups: GL,(R), GL,(C), SL,(R), SL,(C), O, D SO,, O,, D
SO, (case p =1 - Lorentz Groups), U, D SU,, U,, D SU,,

Stiefel Manifolds

Grassmann Manifolds

Isometry groups of R"

Isometry groups of RP4

where
Euclidean Metric: ¢;; = 9;;
Lorentzian Metric: ¢;; = diag(1l,—1,...,—1), ie.
1 0 0
0 —1 0
9ij = :
0 0 -1

Vector fields and Dynamical Systems.
Vectors on Manifolds M™

7= (..., ™).
Covectors on Manifold M™: n = (n1,...,1,)-
T*(M™) - space of all vectors on M".
T.(M™) - space of all covectors on M".

Vector field
7(x) = (t4x),...,m(x))

locally

generates dynamical system:

// i = 7 (x), di=1,...,n

—_— i .
— Solution = curve Z(t): ' = 7'(x)
—_— T

Cauchy Theorem: Let 7(xy) # 0. There exists system of local coordinates
(y',...,y") such that 7 = (1,0,...,0). In this coordinate system we have

23



I ML L

Let 7(x9) = 0. Consider M"™ x R = M’ and vector field 7 = (7,1) in
M’ near z = x.

7 =
ﬁ: — 7'(x9) # 0.
- — Apply Theorem of Cauchy.

t

One-parametric group generated by vector field.
The equation
r = 7(x)

generates a (local) one parametric group of invertible transformations of (lo-
cal domains) in M":

Tl
z(0) = zo , x(t) = Si(xo)

X0

So =1, S—t:St_l ) Strpr = S;0 Sy = Sy oS

Commuting Vector Fields: 7(x) , m(z).

Definition:
[Tl,TQ] = T10T9g — T20T]
T = 7'(2) 8(1"
- _Tia ji — g 0 _Tz@nji
T T Mawi T T i Ot O
Corollary
[ | = ianji_ iaTji B i@nj B i&T‘j i
o= T ozt OxJ " or 0w\ oxi n ozt ) OxI
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Remark. Sometimes we denote operator 7(f) acting on scalar functions
by V. f because it coincides in this case with covariant derivative of the scalar
field f along vector field 7.

Statement: Let 7(zo) # 0, n(xg) # 0. Then [7, n] = 0 = there exists
local coordinate system (y',...,y") such that

7 =(1,0,...,0) , n=(0,1,0,...,0)

They generate a (local) commutative group R?:
Sy — shifts by (7)
Sy, — shifts by (n)

S;l o St - St 9] St/l

Examples.
1. 7 = const in R™ : group of shifts x* — x + ¢ - const.
2. 7" = aja’ (linear)

P = Tx), x0 —ax(t), z(0) =

- x(t) generate linear maps S;.
3. Tra, =0 = S, € SLy(R) .
4. af = —d = S, € S0, .

(2

Lecture 6. Group Manifolds. Lie Algebra.
Important Examples.

Group Manifolds.

1) GL.(R), GL,(C), GL.(Q).
The notation Q represents here the "noncommutative field” of quater-
nions:
{a + ib + jc + kd}

where

P=3?=kK=-1, ij=—ji=k, jk=-kj=i, ki=-ik=]j
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dim GL,(R) = n?
dim GL,(C) = 2n?
dim GL,(Q) = 4n?

Question: prove that GL,(R) has 2 components. GL,(C) is connected.

2) SL,(R), SL,(C) : det =1
Equation : detA = 1 in R™ or in C’
Is this equation nondegenerate 7

3) Op, AA =1,

a) Is this set of equations NONDEGENERATE in GL,(R) € R ?
b) Is SO, - connected manifold?

¢) dimO,, = n(n—1)/2

Op7q : <A777 A<> = <777 <>

p=1,q=n, (n,¢ =1 =X n¢, (Ln)

(n,¢) = oy n*¢* = X0 0™, (p,q)

Unitary group: (,n € C"

Com o= . ¢ =D ¢q = > ¢

1<p i>p

Up,q : <AC7 AT]> = <C> 7I> ) (q = O : Un)
SU,, SU,, : detA =1

How to introduce local coordinates in the group manifold M"* =G 7
Let A(t) € G, A(0) = I.

dA

o . = B € Lie Algebra

Another form

. dA , dA
Lie Algebra — EA or A o
Groups SO,, , O, :
d
(A@C, Am = (Cm) = (A, Al = 0,



Lemma 1: B' = —B (i.e. AY0) = —A(0)).

Proof.
(A(t)C, At)n) = (¢, m) + t[(BC,m) + (¢, Bn)] + O@?)

G AWC ABD| =0 =BG+ (¢ B = 0

- (BC.m) = — (¢, By)

Lemma is proved.

Lemma 2: Je > 0 such that for any A € SO,,, ||[A—I|| < € we have
A=¢eP B = —-B.

Proof.

For small enough e consider the convergent series

B = logI+A—-1) = A—-1 — (A-1)?)2 + (A-1>*/3 — ...
At —T — (A'—1D)?/2 + (A" =133 — ...

B = log(I+A"—1) =
B'  Besides that, from the

We can write then: A = €8 | A = ¢
commutativity of all the terms of the series we can write also:

PP = AAt = T

—B for small enough B.

which implies B! =
Lemma is proved.

Local coordinates in GL,(R) near I can be also taken from a small ball
in the space R = space of matrices.
Lemma 3: For small enough B we have: TrB = 0 < detef =1

Proof.
,b,) we obviously have the

For the diagonal matrices B = diag (b1,
relation dete? = [[e® = exp(TrB). The same property is then also
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evident for the diagonalizable matrices B = S~! o diag (by,...,b,) o S
from the series representation of the matrix e?. Since the set of diagonaliz-
able matrices is dense in the matrix space and the functions exp (Tr B) and
det e? are analytic functions of the matrix entries we actually have

dete? = WP

for any matrix B. The statement of the Lemma for small enough B follows
then from the properties of the function e*.
Lemma is proved.

We can see then that in the local coordinate system in GL,(R), given
by the entries of the matrix B near I € GL,(R), the equation det A = 1
has the form TrB = 0.
Conclusion. This equation is linear and NONDEGENERATE.

Group SO, : Equations for SO, in the coordinate system, given by the
entries of B near I € GL,(R), have the form B* = —B.

Unitary group AA! = I.

U, C GL,(C), we can put again A = e® near I = GL,(C) and
introduce a local coordinate system, given by the entries of B in cr =
R2”* . In this coordinate system:

a) Group SL,(C) is given by equation Tr B = 0 (2 real equations).

b) Group U, is given by equations B = —B (B, = —B), i.e. n?
linear equations over R.

dimU, = n? (over R). Uy = S! = SO, dimU, = 4,is SU;, = S* ?

a b
AESUQ.:>Az<Cd),

where ac+bd =0 , |a?+ b2 =1, >+ |d)* =1, |ad —bc| = 1.
So, we have

N
I
A/~
|
ST
o o~

) PP =1,

i.e. SU2 = Sg.
Quaternion Group: GL,(Q).

Q: {¢g = a+ib+ jec+ kd}
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2= =k =-1, ij=—ji=k, jk=-kj=i, ki=—ik=j
g = a—1ib — je — kd
GLy(Q) = {q: qi=1} = {+VP++d =1} = § = SU,

Pauli matrices:

(0 1 (0 (i 0
e = N1 0) 9T \io) 7T o i

Correspondence to the basic quaternions (i, j, k):
10, <> 1, doy, < ), 10, < k
503 = SUQ/ZQ - 83/22 - R]PB
Indeed, consider the norm-conserving transformations
¢ = 9@, aq@ =1

Space Span{l} and the orthogonal space Span{i, j, k} are invariant.
Two transformations coincide iff : ¢} = +q; .

SO, = S$*x§? /7
Consider the transformations
g = @4q9q¢ , @ =1, a0 =1

Two transformations coincide iff : (¢}, ¢5) = £(q1, ¢2) -

Lecture 7. Group Manifolds: Compact Lie
groups. Most important Examples. Non-
compact Lie groups. Most important Exam-
ples. Lie Algebras. Gradient-like Systems.

Group manifolds.
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Compact groups: O, , SO, , U, , SU, , T = R"/Z" , Sp, =
GLn(Q)ﬂSO4n 5 SOQ == Ul :Sl 5 503 = SUQ/ZQ 5 SU2 = Spl :Sg.

Local coordinates (near [ ):

1. SO, : B'=-B, dimSO, = n(n—1)/2

2. U,: B'=—-B, dimU, = n?

Noncompact groups: R" | Iso(R") 5 R™ (shifts), GL,(R) |,
GL,(C) , SL,(R) , SL,(C) , Opy , Upy , Sympl,(?) .

1 0 0 0
0 1 0 0
qu (61) 767’1) b <617 6]) = O . 0 _1 0
0 0 0 —1

A € Op,q : <AC7 A77> = <C7 77> ’ Ca n € ]Rp,q
A S Up7q : <AC7 A77> = <C7 77> ) Cv n € (Cp,q

Symplectic (skew-symmetric) product: (¢, n) = —(n, () :
Rzn : (6/17 6/1/7 T e:w 6:/1) ’ <6;, €;> =0 ’ <6;'/7 6;-/> =0 ’ <€;7 6;-’) = (5ij

0 1 0 0 0 0

-1 0 0 O 0 0

0 0 0 1 0 0

gy = |0 0 —10 0 0

0 0 0 . 0 1

0 0 0 O -1 0

A€ Symp,: (AC, An) = (¢, n) , ¢ n € R™ (Symplectic Space)

Lie Algebras:
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1. SO, : B'= —-B, (real entries).
2. U,: B'"= —-B, (complex entries).

SOIMZ: <B<7T]> = _<C,B77> ) B-7

Spaces RP? with pseudoriemannian inner product (“metric”):

1 ....0 0 ... O
O ...1 0 ... 0
95 = (€i,¢€5) = 0 ... 0 =1 ... 0
o ... 0o o ... —1

Consider matrix B = (b}). We have

Claim. For Lie Algebra we have Ekj = —Bjk (Not for B !) .

Proof. o o
(BC, m) = Ggri b;- ¢’ 77k = by; ¢’ 77k
(¢, Bn) = gk b;- Ck 77j = Bkj Ck 77j = l;jk Cj 77k
Statement is proved.

Conclusion.

1) Let A(t) € G, A(t) = I + Bt + O(t?) and (A(, An) = ((, 7).
Then we have B = —B , By = g b.. Here G is any group (G Op ,
Sympl,, , ...).

2. Lie Algebra of every group O,, can be identified with the set of
skew-symmetric matrices

Byj = —Bj = guib}
Matrix B is equal to

by = g% gk = g™ b
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with definition '
(glk) = (gki)il
General definition

Let Riemannian (pseudoriemannian) manifold M™ be given with Atlas

of Charts U,, (z.,...,2") and “metric” gg?‘) () in the domain U,. For 2
tangent vectors attached to x we have

(r,m) = gis(x) 'y
We define “metric” in the space of covectors & = (&;), kK = (k;)
€, k) = g7(x)&ny
where (¢7) = (gu)~", ie. g7 g = 0.
Conclusion. 7T*(M") = T, (M").
Remark. “Skew” metrics
gij(x) = —gi;(2)
can be nondegenerate only for n = 2k (n even). We have here (n, n) = 0.

Gradient vector field
Let function f : M™ — R be given. Its gradient is:

vector : V9f(z) = <gij(x) of )

Qi

covector: df = (gf)
x'L

Gradient system is
. O .
i ij — i
i = g5 = @)

Lemma. Let h(xz) be any function in M™. We have

dh . Oh
b . — 9 9
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Proof.

dh , oh y oh Of
— i — i — g g
= ) st = @) gl = (ahdp) = (vm, Vo)
Lemma is proved.
Corollary 1.

y } df
Vo= g — =0
[Y g = i

(Symplectic case).

Corollary 2. For Riemannian metric g;;n'n’ > 0 we have df/dt > 0
along the gradient system
i i OF

T = 4
oxJ
(because (¢) = (gi;)7") .

Important example of Symplectic Manifold is 7. (M™)
dim T,(M™) = 2n , Atlas: {U,, (zt,....2% p%,....p%)}

Fix o - number of Chart.
0

- el = 0
oxt ! Op;

Tangent basis : e} =

Inner Product is

<e;a 63) =0, <€;’, e;'l> =0, <€;: e;‘,> = _<€;'/a 62) = 0y
7 = (e;) - tangent vector to M", p = (€}) - tangent covector to M",

(T, p) =7'p; - natural Invariant Inner Product.

Language of 2-forms

; 0 I

((z*,...,2" p1,...,pn) - local coordinates in T,(M™")) .

“Gradient systems” in the Symplectic Manifolds are called “Hamiltonian
systems”.
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Homework 2.
1. How many projection local coordinate systems for S* € R"*! are needed
to cover all sphere? n = 1,2, 3, ... .
2. How many local coordinate systems are needed to cover RP" 7 Let
n=123.
z € RP" = (R"™™N\0)/z~Xz, X#0
(2°,...,2") ~ (A% ..., A2") , A #0

Prove that SO, = U; = S' and SO3 = RP* = §3/+£1 .
Which matrices belong to the Lie Algebra of the group SOy ;7
Find the group O;; . How many components does it have?
Prove that SO3 = SU,/ £1 .

Prove that SO, = §* x S/ +(1,1) .

Prove that GLy(R) has 2 components. Same for O, .

© N o o W

Lecture 8. Riemannian, Pseudo-Riemannian
and Symplectic Geometries.Complex Geom-
etry. Restriction of Metric to submanifolds.
Length of curves and Fermat Principle.
L. Riemannian Geometry = Manifold + Riemannian Metric g5,
gign'n > 0.

II. Pseudoriemannian Geometry = Manifold + Pseudoriemannian Metric
Gij » det gw(l’> 7é 0.

III. Symplectic Geometry = Manifold + Symplectic Inner Product g¢;;(x) =
—gji(z), detg;j(z) # 0. Corollary: dimM = 2k .
Main Example (Physics) = T.(M") .

Flat Geometry:
M" = R", g = const
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1. Riemannian Case: |[|n]|2 > 0, (e, e;) = d;; .
2. Pseudoriemannian Case: type p,q, (e, €;) = £6;; .

3. Symplectic Case: M2

<e;’ 63) =0, <€;/7 6}’> =0, <€;> €;’> = = <€;'/a 62) = 0y
0O 1 0 O 0 O
-1 0 0 O 0 O
0O 0 0 1 0 0
G — |0 0 -1 0 0 0
0O 0 0 O 0 1
0O 0 0 O -1 0
4. Complex Geometry: (z%,...,2"), 2! = 2! +dy!. Complex Vectors:

n = (771,...,77”), n e C.
n,¢) = giyn'¢

(eive5) = gij = Gji
IIn]|> > 0 — positive case, ||n||*> = indefinite type — real form of type
(. q)-

Volume element in M", g;;(x):

d"oc = \/detgy , di'® - -®@d" = Jgd'z

(Riemannian Case)

"o = y/(=1)adetg; , dr'®---®@da" = Egd'z

(Pseudoriemannian Case)

Transformation Rule (“Measure”) :
oz’
oyJ

v = x(y), d'rx = dr'...dx" = |det dy'...dy" = |J|d"y
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Important Remark. For manifolds given by Oriented Atlas (J > 0)
we can write d"z = Jd"y (differential forms!), J = det||0x"/dy’|| .

Lemma 1. Riemannian Metric in the manifold M" defines Riemannian
Metric in every submanifold W* c M™.

Proof.

Let W* C M™, locally we have for local coordinates y in M™ : 3' =
yi(zt,...,2%) , i = 1,...,n, where x represent some local coordinates in
Wk,

We define “restriction of metric”

oy® Oy*
/ — [

(restriction of inner product on every linear subspace of tangent space). It
remains positive.
Lemma is proved.

Remark. The analogous lemma is wrong for Pseudoriemannian or Symplec-
tic Geometry because after the restriction to linear subspace metric might
become degenerate.

R light cone: (n,n) = 0.

Riemannian Metric < length of piecewise smooth curves.
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X(t) B

A

“Distance” = min, [(7)

ae<____ b

Statement. Riemannian metric transforms M"™ into metric space

[(a,c) < l(a,b) + U(b,c)

Another metric induced by imbedding M™ c RY (Either M™ is compact
or M"™N DY is compact for all p > 0) .

“Geodesics” = “Locally shortest” paths
./~/. b
a
R™ : geodesics = “straight lines” .
b

cl - speed in the ail

P. Fermat (XVII Century)

c2- speed in the wate

a

“Minimal Time Principle”: Light propagates from the point A to
the point B along the path with minimal time among all piecewise
smooth paths joining these 2 points
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2
Time = / dl

dl = \/dx? + dy? ‘

Let ¢(z) = {2’ 328

a

1(X)= cl

Minimize this integral:

Minimal time = > \
X min, I(a,b, ) =7
c2
b
So we have a ”Fermat Riemannian Metric”

Oy 1 1
Fo_ ij 2 _ 2 _
o = a5 Wl =l Il = Dol 3

(F = “Fermat”, E = Euclid) .

Speed of light in vacuum ¢ = cyge ~ 3 - 1019 em/sec,  Comedia < Coacuum

How to find geodesics?

Euler - Lagrange (XVIII Century)

Consider more general problem. Let L(z,n) (“Lagrangian”) be a
smooth function in 7*(M™) (tangent manifold). Fix points a,b € M™ .
Find “extreme curves” for the action



(n = @) on the piecewise smooth paths: z(t), x(0) =a, (1) = 0.

/*/4. ’
a X(t)

Examples:
Geometry: action and length functionals
1 L1
) L= ses@rn = 5l

b) L' = |l = Vgin'n’ — length

Physics: action functional
1 2
L= SlhlP - U

(gravity, electric fields)

L= Slll = eUG) + S Aa(t)

- electric field E; = —9U/dz", magnetic field B;; = 0A;/0x? — 0A;/0x".

Lecture 9. Geodesics and Calculus of vari-
ations. Length and Action functionals. Ex-
amples.

Geodesics: M™, (z',...,z") (local coordinate system), g;;(z), gij(x)n'n’ > 0

Length of path {z(t)} = v

a Y
More general:
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“Lagrangian” L(z,n) : T*(M™) — R is given.
“Action functional” is given

S} = / L (x(t), #(t)) dt

Examples:
1) L = gj(x)a'a?/2 = ||z||*/2
2) L' = Jgyitii = ||&]]
3) L" = ||#||?/2 — U(x) (gravity or electricity)
4) L = ||2||*/2 + (e/c) Ai(x) 2" - magnetic field (its vector-potential).

5) “Relativistic Particle” (7)

Geodesics: Either (1) or (2)
P. Fermat: g;j(x) = 0,;/c*(x)

“Variation” of path ~

7+ en(e(t) = 7 }‘/ii/ b

a
(locally it makes sense) Y
n = vector field along (v) (tangent to M™).

Variation of Action:
b
S{v+en} = / L(z(t) + en(t), © + en) dt
Requirement: vector field should satisfy to some

"boundary conditions”. At the firs step we take n(t)
vector fields 7n(t) is C* and equal to zero near 5 ¢—< o b

the endpoints (a) and (b)

Extremal curve or critical point: (to find it necessary to solve following
equation for all boundary conditions at the endpoints)

as

o -0
de |._,

for all n(t) (C° and 0 near the endpoints).
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Lemma (Euler - Lagrange).
Curve ~ is extremal iff

4 (ony _ o
dt \o&i) Ozt

L = Lz, %), (x,%) € T*(M") .
Proof. We have

as

e (y+e€n)

_ i/a L(z(t) + en(t), & + ei) dt =

e=0

_/b 8Li+8L.i dt_/b oL d oLy .
= L\ T an” = ) \or T waii)”

which is true for all n(¢) which are C* and equal to zero near a and b.

Indeed, we have
POL i /b gdoL (0L b /b i d oL
o T T T ) T at o Towi )| = ), " at o
because n'(a) = n'(b) = 0.
Take now n = (0,...,0,7%,0,...,0) JL
i
Conclusion: We have the Euler - Lagrange System of ODE

oL d (0L
ort  dt \9i

near t =ty for all ¢y € (a,b) .

a

Lemma is proved.
Terminology:
0L/oi'" = p; = “Momentum”

OL/ox' = f; = “force”



1 o )
L= 5%;‘(@50135] = pi = g’

TH(M™) —  T.(M")

T — D
velocity momentum
vector (covector)

Equation of Geodesics:

. 9L _ 1 (0gy gl
pk_@xk_Q oxk v

Another form (for length) L' = /g;; %7 :

dt 9ij(w) ' @ O 24/ gij(x) i1 27 Ox

Conclusion. Let parameter ¢ for the length functional L’ is “natural”, i.e.
t = U(y) (length), dt = +/g;j(x(t)) 2?2/ . Then we have same equations
for both L and L’ because /g;(x(t))d?dd = 1.

Corollaries.

1) Geodesics for R", ¢;; = &;;, are the /0 b
straight lines. a

y timelike

! lightlike

xO=ct

2) Relativistic Particles: (2%, 2!, 2% 2?),

gij = dlag(l,—l,—l,—l) .

Let 20 = ct, _.--"7 spacelike
n? < 0 - “spacelike” vector, = -mmm------ K- ---- oy

n? = 0 - “lightlike” vector, E X=X

n? > 0 - “timelike” vector. |
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Requirement:

For every real material object we have:
(¥, ) > 0.

If the mass of the object > 0 then we have:
(,2) > 0.

“Time which you lived” :

1 [° 1
T = E/ VG, &)y dt = Elength(’y)

Let
P @), @ = (@ i¥e i)
Then
ViE, ) = ¢Vl — w?

For a particle of mass m we put :

L = —mecn/{x, 1)
“Momentum”:
oL m it
i — —_— — —_— y ) — 17 27 3
b o’ V1—w? '
Energy :
- OL
E =1 — — L
Y i
Examples :
1) Geodesics
1 )
L = 59”(:10)2‘0’557 = &=1
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2) Gravity or electric field

1 o 1 o
L// = § gw(iﬁ) v L a— U(Qf) = € = 5913(37) Tt 1! + U([L’)
3) Magnetic field
" 1 i v j e -0 1 5.
L = ) gij(x) &' 37 + EAz(:U):c = & = §gij(x)x T
Equations :
1) Geodesics
. 1 agij i e L
Dk = 2 (w) il Pk = Grjd’
2) Gravity or electric field
Pk—§@$$=—@> P = Gk T
3) Magnetic field
. 1 agij i e 0A; i ¥ €
Dr — 3 (ﬁ) A e T, Pk = Gk’ + EAk(l")

1.e.

i (gk.j;j) _ 1 0gij - ¢ % _ OAy, gl
dt 7 2 \ Oz c \ Oz ox'

Magnetic field
B — 04; 04y
T Ok oxt

Lecture 10. Variational problem and geodesics
on Riemannian manifolds: Action Functional,
Lagrangian, Energy, Momentum. Conserva-
tion of Energy and Momentum.

Mn’ ('Ilv""xn)? g”(ﬂf) .
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“Lagrangian”: L(x,n) : T*(M") — R.

S{v} = /L(;E(t), x(t)) dt (Action)

“Momentum”: p;, = 0L/0i" = 0L/

_/b oL d oLy .
o Jo\oz T atoi)”

‘variation” of the path ~ .

ds
6S(v,m) — 2 (y+en)

¢

where 7)(t) represents

a n(v b

Euler - Lagrange equation:

5S — 0 o d(@L)ZOL

dt \ o ozt

Examples
1) L = gj(z)i"27/2

2) L = oy a

3) Physics
T T
gravity, magnetic
electric field
field
“Energy”
; OL ; OL
£ = oit L Y
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Energy Conservation Law

Theorem 10.1. For the Euler - Lagrange System we have the following
conservation law:
d€
dt
(i.e. & is constant along the trajectories of the Euler - Lagrange System).

= 0

Proof.

¢ d .iaL_L _._i8L+,ii oL\ oL ., 9L .
. dat\" o = T or TV w \ow o T omt T

_i@L_@L i _ 0
| dt \ o 8xix_

Theorem is proved.

| Momentum Conservation Law

Theorem 10.2. Let L(z, v) does not depend on ! :

Then we have: p; = 0 on the trajectories of the Fuler - Lagrange System.

Proof.
d (0L oL

plza(@):%zo

Theorem is proved.

Definition. Vector field ¢ = (('(y)) is called “Symmetry” of Lagrangian
if L(z, v) does not depend on z! in the local coordinate system (z) where

¢=(1,0,...,0).

Corollary. In the original system (y!,...,y") we have ¢ = (¢},...,¢")

The component p; = p; (" is a conservative quantity because p¢

is exactly the first component of p in the system (z',...,2") where ¢ =

(1,0,...,0) .
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Examples.
) L = gj(z)i'27/2
Energy

gz'iaL—L:L

—
ozt

£ =0 = - parameter along geodesics is NATURAL because

1
& = §||x||§ = const

along trajectory.

2) Let a surface M? C R® be invariant under
rotations around z - axis:

L = gy@##/2, n=2, o = (py), suface B(p,2) = 0,
OL/0p = 0.

“Angular Momentum”

oL .
p, = —=- = const —  along geodesics
9
Geometrical meaning - later.
Consider now
1 1
I = ay - 5 [(;UO)Q _ (xl)Z o (l"2)2 _ ($3)2} = o §<x’ x>



L = 4y /@7 = @ = @F = @P = ap- &, 3), =2
Relativity

L/
Use L' : & =1", 54):8—,
ozt

time 7 ~ length by theorem above so

(4) oL’ dz® dt  dx' dt dz® dt
Wo- G = (-
ﬁ 1 dr 1 _ 1
o T e -giiey  VETY
where
v

dt’ dt’ dt

So we have for the 4-momentum

’ 4-D Formalism ‘

W _ ( 1 _datjdt  dd?/dt dat/dt )
b ! VI—w?  cvV1—w?  cvV1—w? cvV1—uw?

Clearly we have to choose: a; = mc , where m is the mass of a
particle.

where w = v/c.

’ 3-D Formalism ‘

Use L” . We use time t = 2%/c , 2° = ¢t

I = o (@ = @ - (@ - P
oL” v as v
RO - G v
“ oz 2 — 2 ¢ \/1—v2/c?
v* = dz®/dt , o = 1,...,3. We choose ay = —mc .
So we finally have

8L//
g// — s _
T Bie

2

0 mc

= T w = wv/c
48



E” = ‘“physical energy” &£ . Let py = £/c. We have

2 2 2 3 2 2
Po =—P1 — Py —Pp = Mmc

- “MASS SURFACE” in the space R!3

\\ ,', (Hyperbolic = Lobachevsky - Bolyai Space).
T 7 “Velocity” of particle
2 1,2 .3 v’
RN vo= (v,v ), ——e= =
”/ \\\ ( ) /1_7)2/02

We have “Poincare” Model for 3D Hyperbolic Space
(ball)

Homework 3.

1. Prove that group O(1,1) consists of transformations:

p.pPr=1 ., 7. T*=1 (v she
shp chop

U(L,1) = Zy x Zy x R (topologically) , g = ((1) _01)

O(2) = Zy xS' (topologically)

2. Prove equality SU(1,1) = SLy(R).

b

SU(1,1) = ( a) CJaP— (2 =1 ., SLy(R): {A, detA = 1}

2

Use change of basis (e1, e3) <> (e = e1 +1ies, € = e —ieg) .
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3. Prove that SLy(R) = R? x S! (topologically).
4. Calculate Euclidean Riemannian metric of R? in polar coordinates.

5. Calculate Riemannian Metric of sphere S?:
S 24yt 4+ 22 =1, RY: d? = da® + dy® + d?
in the spherical coordinates 6, ¢ :

z=rcosp , x =rsinfcosy , y=rsnfsing , (r=1)

6. Calculate Riemannian Metric of “pseudosphere” (hyperbolic Lobachevsky
plane)

Lecture 11. Geodesics and Action Func-
tional. Examples. Hamiltonian form of Eu-
ler - Lagrange equation. Conservation of
Energy and Momentum. Euclidean, Spher-
ical and Hyperbolic Geometries.

Geodesics:

b
./\/\/. S{v} = LL(x,v)dt , V=1

a Y
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1 L
I = égij(x)izx'] , L(z,m): T"(M") - R

Euler - Lagrange Equations:

. 0L - j
bi = Gy o BT 9570
oy = (32 - W)
=g (%% - %) i i

Let us introduce the “Christoffel Symbols”

L i (99 | Ogie  Ogjk
RO A ik 295
& ik 2 7 <8xk * I oz’

We have then .
U A
Euclidean (Pseudoriemannian) Metric: I}, = 0 .

Examples:
1. R*: da® + dy* = dzdz = dr® + r*(dp)?

dzdz

2. S? . d6? in%6 dp? _—
+ sin p- = (1+|z|2)2

dzdz N dzdz
(1—1z?)? Y2

Lemma 1. For the general metric of the form di*> = dp? + ®%*(p) (dyp)?
every line ¢ = const is geodesics.
Proof. We have

3. H?: dy® + sh’ydy? =

L= 7+ 20
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Euler - Lagrange equations:

o= () S (@(p)e) = 0

So we have: ¢ = 0 always satisfy to the Euler - Lagrange equations.
Lemma is proved.

Remark. Integrate Euler - Lagrange equations now:
P*p = a = const = ¢ =a/P*(p)

and therefore: p = @& (p)a?/®(p) = a®>P'(p)/P(p) ,

. oV (p) 1
. —_ —_ 2 pumy
S0« p - a ap ) V(p) 2@2(p) )
22 2
so: pp + a® a‘gip)p or % + <I>2a(p) = b = const

We have then

po= V20a/P(p) ~b)

and

= p=pt), ¢ = a/P(p)

_ dp
= | e

Conclusion. Every geodesics for the M? = {R? S? H?} can be obtained
from the straight line ¢ = 0 (or ¢ = const) by the action of the following
groups:

1) R?: Iso(R?) — straight lines (Euclidean space).
2) S§*: SO; — big circles (round sphere).
3) H2 . 502,1 (: SLQ(R), SU(l, 1)?) |mmetry
- circles orthogonal to the boundary in - group
the Poincare model: SUq 1
dzdz
1 d? = ——"
et (- PP
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Klein Model: ,/'
y=Imz > 0, di* = dzdz/y* . PN

How to prove that they represent the same metric?

Geodesic Flow = Dynamical system in T*(M™) = T,(M™) .

™(M"): P =P, WP = T v
“ (A . oL i i . j
T B= g i = @k = g(@)d)
Theorem. Let
- OL
& = H E =i— — L
(z,p) (z,p) i om
Then we have
. oOH g oOH
i = — - s €T =
b oxt Op;

Proof. We change (x, v) — (z, p). By the Euler - Lagrange equations we
have for & = v'p; — L(x, v(z,p)) :

o0& o' : oL o' , A
(), (e ()., - o
) (apj)z (apj)zp 0v' ), \Op;/,

2) o8N (o - (oL\  [(OL o' L

o), — \ow ) P 7 \ow ), ~ \ow), \oai), =~

Theorem is proved.

Definition. H(z, p) = “Hamiltonian” (function) (generator of time
dynamics).

Remark. Hamiltonian system is a “skew-gradient” flow in the inner product

of (z,p) - space
0 I
95 = \_1 o) = 9
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2-form

QO = idmiAdpi

is invariant under the flow (later).

\'
T ERO H=const
I’ \\
Example. n =1, H = p?/2 + V(x), N .
L=3%2—-V(x), p=uv. : > X
\\ ’
dH :
o = 0o . (energy conservation)
For geodesics:
L 1 .
H = 59 (x)pip; , L = 59@'(@%%’ ;
(97) = (9)™" » %o =0 , 95 = 9

Lecture 12. Curvature of curves and sur-
faces. How to differentiate tangent vector

fields?

Curvature.
1. Curvature of curves y(t) C R™. Let 4 # 0. Choose normal parameter

t = lengths , v = (s), h[=1, y=r1.

Definition. |j| = curvature
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Special case n = 2 (oriented plane) :

(1, n) - orthonormal oriented frame.

Statement.
= _ 0,
ds
(k = curvature ).
Proof.
dr ) .
(r,7) =1 = 2<,d—>—0 = Tt1ln = 7T=%Fk-n
s
Statement is proved.
Frené:
(1(s), n(s)) = A(s) (10, n0) , A(s) € SO,
SO A
%A 1 = B(S) = —Bt(S)
So we have:
dA dA 0 k
- = B(s) A(s) or = (—k O) A(s)
or
T = kn , n = —k7

2. Curvature of Hypersurfaces

M™ c R™ (2% 2', ...

Let M™ is given by the equation
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Coordinate system is chosen in such a way that z L M™ at the point

P: (2, ..., 2") = (0,...,0), so we have near P:
9] OF
Rl B — 0, j=1,...,n
Ozl | Ox? (0,...,0)

Curvature form (“Second quadratic form”) k;; da’da? :
0PF

ki da' do! = oo da' da!

(at P only!)
It describes curvature of Normal Sections (curves) in R™™ | n > 2.

"Principal curvatures” = eigenvalues k;

" . 1! 82F
Gaussian Curvature’ = det — = K
o0xt0x’

0xi0xI

K<0
convex K>0 W\\

Gauss Theorem. Gauss Curvature depends only on the Riemannian Metric
in M". (Later).

2F
"Mean Curvature” = Tr( 4 >

Riemannian Metric for M? C R®. Let z = F(z, y) , where (z, z, y) is
an orthonormal coordinate system in R3.

di? = dz* + d2® + dy? = (Fydzr + F,dy)’* + da* + dy? =
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= 1+ F)de® + (1 + F))dy* + 2F, F,dxdy
For the point P € M™ where z L M"™ we have g;;(x) = d;; .

Invariant form of characteristic Polynomial

det (kl] — )\glﬂ)

Here (A1, ..., \,) - principal curvatures, > ); - mean curvature,
A1... A, - Gaussian curvature, k;; transforms as a quadratic form in
the tangent space.

Our Goal : Riemannian Curvature and Curvature in the vector
bundles.

Derivative of function
d: [ = df = ) fedd

covector field:

(m) = (far)
Vector field:

(¢) = ()

Transformation rule = = z(y)

Consider now

4 Ozt p
o = ﬁ(g’ﬂa—x) ,  where 0 = %" 0

Oxk oyJ ox* ozk Oyp
We have
D00 (o oy aror oy o,
Oxk oxk oyp oy’ oxk oyl Oyr oxk OyroyI
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Conclusion: Second derivative enters in the change of coordinates rule

O L (P oo,
Oxk oyP oxk Oy OyPy’l Oxk
TENSOR LAW NONTENSOR LAW

For covectors:

0 oy 9 (,8yj) B (3 ,> oyP Oy N »ry

Ok (n:;) = az* oy \'V By a_ypnj Oxk Oxi Doz M

Conclusion 1. Skew symmetric expression Oy 1n; — 0;m transforms as a
tensor (inner product)

oy oy 997 Oy

or
ox* Oz .y .
<$) ayp ayq (ak N — al 77k) = ap Mg — aq U

which makes sense even if number of (z)'s (n) is not equal to number of (y)'s
(m) !

(y) — ()

N™  — M

We call the corresponding tensor “differential 2-form”

hij(z) = —hyi(x)
ox' Ox? .
h;q = hz’ja—ypa_yq ) h — f*(h)
I — h
oo
2 — form in N™ 2 — form in M™

Conclusion 2. Quantities 0;7n; and 0, (? are not tensors. How to make
tensors?
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“Covariant derivatives”
Vi = O + Tt
Vin; = Oimy — Tfme
where I', are “Christoffel Symbols”.
Requirements: V;7’ and V,7; are tensors.
Difficulty: V,V, #V;V,, V,V, = V,;V, = Rij (“Curvature”).

L where RZ is a linear
space with basis (e;(z), ..., er(x)) depending on the point (x!, ... z"),
U(z) = > Uley(x) . Consider the set of linear equations

More general (local picture): consider ¥(z) € RE

oV /0! = A;k Tr (2t ... 2™
Can we solve this system?

Let us define Operators of “Covariant Derivatives”

V= - A
Lemma. The set of linear equations (above) is solvable for all “initial
data” U(z,) = ¥, if and only if
VZ'V]‘ - Vjvl - Ri]’ - 0
forall z € R™.

Proof. For every solution ¥(z) we have

and
or
or
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where

So we have R;; ¥ = 0 for all x € R". Therefore R;; = 0.
Lemma is proved.

Rij = [Vi, Vj]

Examples.
a) L = n, U - vector field, A;k = —Fék-
b) L = n, ¥ - covector field, A;k = sz
c) L =1, A; -scalar values, A;A; — A; A, =0,

&‘AJ‘ — @AZ = Rij

Lecture 13. Vector bundles. Connection
and Curvature. Parallel transport.

Vector bundles and Curvature.
Vector bundle = Family of Linear Spaces RY depending on parameter
x € X and “locally trivial”:

For every point © € X there exists an open set U > x such that we can

choose a basis [eY(z),...,e¥(x)] € RY continuously dependingon = € X .

For x € UNYV we have

el (x) = al""(x) €] (2)

Real case: a’ € GL,(R)

J

Complex case: d} € GL,(C)

Orthogonal case: a§ € 0,

Unitary case: aj- e U,

- For all pairs U, V' (!).
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Other groups are also possible and define the “structural group” of the
bundle.

Our case: X is a C*-manifold and a!(z) are C*-functions.

(T

Example. Let X = M* c R*. Consider
family of tangent k-spaces to M*.

Map G : M* — Gyr (Grassmann Manifold).
Curvature is local quantity.

Locally vector bundle is given by the product U x R" according to the
choice of the basis ej(z), ..., e,(x) in R™.

Consider set of linear ODE’s

oI . .
o = AR V(@) T =Y W)
1=1,....n, 3,p=1,..., N.

or: 4
VW = 0,% — A UP = 0
Is this system solvable?
For n = 1 it is true.

For n > 1 it may be wrong! “Curvature” R;; of this “Differen-
tial Geometric Connection” Aj (r) should be equal to zero:

o _ A
Vi Vil = ViV = VoV = | o = Ae), 5 - Aye)| = 0

As we saw in the previous lecture, we can formulate the following Lemma:

Lemma. The set of linear equations (above) is solvable for all “initial
data” V(z,) = Yy if and only if

VZ-Vj - V]Vl = Ri]’ = 0
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for all z € R™ .

Rij = [Vi, Vj]
Examples.
a) L = n, ¥ - vector field, A% = —T%.
b) L = n, ¥ - covector field, A%, = T.
c) L =1, A; -scalar values, A; A; — A;A, =0,

aiAj — 8JAZ — Rij
“Gauge Transformations”, Curvature
We have ;¥ = A; ¥ (Matrix Form), A; = Afj(z) , so
sz&—Az, quaq—Aq,

04,  0A;
[Vi,vq] - Riq - - agjl + % + AZAq - Aqu

(Matrices in RY) .
1) For tangent (cotangent) case N = n.

2) For scalar case N = 1, n is any.

3) For euclidean case (e;, e;) = 0;; we should have (A;)
(skew symmetry).

Change of Basis:

e bi(z)e; , [e= B¢
\I/Z e, = \I[Z bg 6;- y \I//j = \IJZ bz
U = B(z)U
Lemma 2. Let -
J A
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Then for the new basis (e}) we have

ov' 4
= AL v
where 5B
Al = BA,B' + =B!
ox?
Proof. We have ¥ = B(z) V¥, so
oV’ 0B 0B
~ = BAV + —V = BAB'V + —B'V
ox’ ox? ox?
Lemma is proved.
Conclusion. 3B
A = BA,B' + =B!
ox?
Let B! = G(z), we have then
oG

A = GTAG — G =
oxt

- Gauge Transformation.

Homework 4.

1. Prove that the group O(1,1) (connected component) can be written in
the form
(chw sh w> i Vi
shy chvy —— #

2. a) Prove that every isometry of R?, preserving orientation, is either shift

or rotation around some point.
b) Prove that every isometry of R? | inverting orientation, is product of
reflection and shift along this line (line of reflection).

3. How many local coordinate systems are needed to cover RP? ? Find cover
by 3 domains.

63



4. Find cover of sphere Sg with g handles by 2 systems of local coordinates.

¢-(0 0 00

5. Introduce “pseudospherical” coordinates

2 = pchf , ' = pshfcosyp , 2 = pshfsiny

Restrict metric
(da®)* — (dz')* — (dz*)”
‘pseudoshere” p = 1. Calculate it.

on the ¢

6. Prove that the following metrics are equivalent:

dzdz
2
CL) ’Z‘ <1, dl(l) = m
dw dw
2
b) Imw > 0 y dl(Q) = (Inlw)Q

Use transformation

(K)

az + b

cz +d
Find a, b, ¢, d such that ball maps into upper plane.

7. Find isometry groups for P and K in the form

az + b

& cz +d

Prove that

(Z Z) € SU(1,1) for P and (CCL b) € SLy(R) for K
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Lecture 14. Vector bundles. Connection
and Curvature. Parallel transport.

Vector bundle=“locally trivial” family of vector spaces RY, z € X with
“local bases” [eY (z),...,e¥(x)],z € U C X, Vo IU > .
ForxeUNV

ef (x) = " (2)e} (2).

“Group” o/"V(z) € G ¢ GLy(R)

Differential geometrical connection (on vector bundle).

Locally matrix-valued functions A;(x) = (A4;).(z) are given for all z €

U C X, and operators VY = 9; — AV acting on functions ¥V : U — RV,
)
ViUl = 9,uY — AVWY.

In intersection x € U NV we have
oY =g"v"uY ) G(z) = ¢"V (2),

such that:
AZV = Gil(x)AiUG(x) - G1o,G

(gauge equivalence).

“Curvature”
Ry =V{V) —VIVY (matrix functions).
Theorem (Later):
V _ ~-1pU
&-tangent vector to X = M™ in the point x € M™, x',... 2™

owv ,
Ve = ( o Ai\pU) 1%

— covariant derivative along & € T.
Curve v = {x'(t)}. Covariant derivative along ~:
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o X YO

Definition. “Parallel” vector field along the line ~(¢):
Vg(t)\IfU(x(t)) =0 for all .

“Parallel transport” e+ vector WY (zy) = ¥, along the line y(t), v(0) =
Zo.

Y Results for v, and 7, may be
, different!

Xo y

Geodesics: N = n, vector bundle is tangent vector bundle to X = M",
R =T, ey,...,e, — standard basis in tangent spaces in local coordinates

T

e, =0/0x' for U C X, X = M".

Definition. 7(t) = {2/(1)} is “geodesic curve” if V{, i(t) = 0.

Lemma 1. Curve v(t) = {2?(¢)} is geodesic iff the following equation is
true: o
i+ )4k =0,
where IV, = — A/, (x) (Connection).
Proof. By definition, we have
Viwi(t) = i*Vii(t) = @0 (t) — " Al (x)i' (1) = & (1) + T)i'a" = 0,

Geodesic equation

“Variational geodesics.”
A N |

we need
Fk — = (Ak + Ak ) — 8y mmetric art

for these 2 equations coincide. Calculating variation, we obtain:

1% agiq” _ lglq {_59@' n 99iq n 59@

[ . . lq o
I';; = Symmetrization of {g [ 200t | O 9 ord  Ori | Or
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Calculation of Connection and Curvature: (it is linear operation)

1. Covariant derivative of scalars is trivial:
fo(x) = ﬁiaz‘f-

2. Covariant derivatives of vectors, covectors and tensors like inner prod-
ucts are defined:

V& (x) = 0,67 + F{kfk vectors,
Vin(x) = 0in; + ffjnp covectors,
Vitik(z) = it + Gf]l.ktpl inner products of vectors,
such that
a) Vi(&n;) = Vi(&)n; + & Vi(n;) = 0:(&n;) (scalars).
b) Vi(&m) = Vi(&)m + & Vi(n) (product of two covectors).

¢) Vigi =0, gy =Riemannian Metric.

Theorem. There exist unique symmetric connection such that

Vz'tkl = aﬂfkl - F?]gtpl - Ffltkp (2>
i i 1 is 39 j s agsk ag jk
Ui =14 =59 y - (3)

2 ok oxd oxs

Proof of (1): we have (a):

Vi(n*&) = 0:i(n*&) = O" + T ) + 0 (06 + T3&), = I'=-T.
Proof of (2): we have “Leibnitz” (b):
Vi(mér) = @ + Tino )&+ m(9i + Th&o),

so we see that (2) is true for the “products” (1), so it is true for linear
combinations of products and so it is true fro all tensors of the type (tz).
Proof of the formula for Ffj — next lecture.
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Lecture 15. Connections in tangent bundle.
Curvature. Ricci curvature. Einstein equa-
tion. Spaces of constant curvature.

Differential-geometrical connections in tangent bundle T*(M"), z!,... a™.

A;k( ):F;‘k( )

i (x) = O + szn ) (vectors)
ﬂlk(ﬂf) = Oy, + I ;J)j, (covectors)
Vitjp(x) = 0itji + ngk ol (inner products - tensors)

Axioms:

1. Vf(z) = 0;f(z), scalars.

2. Vi(&n;) = Vi(&)n; + & Vi(m)-

3. Vi(&km) = Vi(&k)m + & Vi(m).

4. Vg = 0, (g =Riemannian Metric).
Items 2-3 are Leibnitz rule.

oy . . %« P— RTEN k _ Tk 3 —
Definition. Connection in 7*(M) is “symmetric” if I'};(z) = I'};(z) (“torsion”=0).
«“ : _ Tk Tk k
Torsion tensor” = T} (r) = ['};(x) — I'j;(x).

Theorem. There exists a unique differential-geometrical connection on
T*(M) extended to covectors and tensors as above, symmetric and com-
patible with Riemannian metric V,g;; = 0.

Proof.

Step 1: Prove that fk = —T}; (follows from the Axioms 1 and 2).

Step 2: Prove that V itk = 8t]k [iitsr — Tiitjs.

Proof. From the Step 1 we have I = —I'. From the Axiom 3 we have
our result for V;(3> 5 ,(Cp)n] )y thi = >.p ,ip)n]p). Every tensor t;; can be
presented in that form (may be as a series).

Step 3: From the condition V;g;; = 0 we have

Oigk; = 1;grs + Tigsj
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Let us solve the system of linear equations for the triple (ijk) using condition

¥, =T% (3 equations for 3 unknown quantities I'}; = T'%) or I'y;; = gesl’

Solution:

S
ij

1
Lijr = 3 (0j9ik + Oigrj — Orgsj) -

Our equations are:
0igrj = Uije + Lir

u = 0;gkj, V= 0kGij, W= 0;gu,

' 2
1
Lijir = 5 (0igrkj — Okgij + 0;Gki) -
S 1 S

FZ = gk 1—‘ij;s = Egk (aigsj + ajgz’s - asgij) .

For the case Ffj = F;?i, gi; = gj; we obtain the same formula as for geodesics
(for Calculation of Variations)

i+ Thi'i! = 0.

Curvature.
(RV),; = ViV, —V,;V, = R;;, (where) R are matrices.

_or;  an,

V. -V =[0+T:.0: T = —2 _
V.V, = V,V:= [0, +1:,0, + ] 5r o

+ LI —IL
————

product of matrices

Example. Consider special coordinates for M? C R?

(z L M2, z,y —local coordinates near zy = (0,0)),
X,y

(5@'3' = gij(()), z = F(az,y), Gow = 1+ F37
° gry:Fwa7 gyyzl—i‘F;
We have finally:
9:(0) = d;5, igu(0) =0, = T7,(0) =0,
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8Ffj
ozl

Conclusions from calculations (later):

=7 Calculation is required.

L Rij = 9is 5.1 = BRiazij-
2. Rjiw = —Rijo = Rijag.

For n = 2 we have: 4,7, k,l = 1,2. The whole curvature tensor R;;; can
be defined by 1 scalar function R (why?)

R;; = RE, . Ricci Curvature

Z7k]

R =R, R; = gisst, Scalar Curvature

Gauss Theorem. R/2 = Gaussian Curvature of the surface M? C R3
(Calculation later).

For n = 2 and M? = S? R?, H? we have R = const.

For n = 3 we have: Ricci Curvature R;; completely determines the whole
tensor R;; k. Why? They have the same number of components.
Curvature of R™, S™, H".

0,
R=< >0, 7
< 0.

Curvature of conformally Euclidean metric g;; = ¢*(x)d;;.
What is “Curvature of 2-directions”?
Einstein equation: n = 4, g,;-indefinite.

1

Rgi; = Agij, no matter, only gravity.

“cosmological constant” \ # 0.
Curvature of metrics in the compact groups like SO,,, U,, ...7?7
What does it mean — “Constant curvature”?

ViRij =0 “locally symmetric spaces”.

Compact groups, in particular.
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Appendix to Lecture 15.

% = 0" Tijis = 50 (9uji + 0iGisi — Gisis) -

Our notation:

-7 fi, where qu = Ffj
Our system:

9i(0) = 055, 9ij(0) =0, g7 (0) = &;; = g:5(0), g7 ,(0) =0

~

Rig = Rjpiqg = Rjk;iqa (ac, y=0, 0)-
ol 1

axqi = §(gjk,iq + Ggjik — Gqk,ij)

orl, 1

ora é(gjk,iq + Gijugk — Yik,aj)

2Rjkiq = Yjkiq T Gajik — ak,ij — Yjkiq ~ Gijak T Jikaj =

= Gqjik — Yak,ij — Gijqk T Gik,qj

(All formulas are valid at the point 0,0)

Lecture 16. Tensor fields. Curvature as a
tensor field. Gaussian curvature for surfaces
in R3.

e What is a tensor field?

Calculations: Curvature is a tensor field.

Calculation of Curvature in the special coordinates.

Algebraic properties of Curvature Tensor.

Gauss Theorem for M? C R3.
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e Curvature Tensor at the most symmetric spaces R"*, S™, H".

What is a Tensor? (Scalars, vectors, covectors, inner products, Rieman-
nian Curvature.)

M", 2t ... 2" -local coordinates. Tensor field of the type (k,1) is defined
by components:

T;wi+(z), dim =n"*', Vector bundle ¥ : M™ — Tensors,

such that for x = z(y) we have change

. i1y Ot oyr

Examples: T%(z) — vector field.

9P
oxt’

Ty(y) = Tj<x<y>>g—;;,

TP (y) = T'(2(y))

Inner products: o
., Ox' O
I = 9955 oy
Linear operators: ’
. OyP Ox?
al = a'=——.
q T 0xt Oyt

Inner product of covectors:

AP

S0P 0
oxt 0xI

1. (2
Operations: linear (sum), product of tensors T4 - T g = T}S , permutation

of indexes: g;; — gji-
“Trace”: Tz — ZZ Tz

ceileo. L1 7.l ?...

Calculations.
V=GV, V,=0;+T;, Vi=0,+T}, I, =G 'IG+ G '9,G.
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Rij = V,VJ — V]VZ = 81F] — 8]F1 + FZP] — F]FZ

Theorem: R;; = V;V/ - V,;V; = G 'R;G.

Proof: We have ,G™' = —G~1 ;G G™!, because 0;(G™'G) = 0 = 9,G'G+

o, = 0i(G7'I;G 4+ G719;G) = —(G7H(0:G)G'T;G)+
+G7'o;G + GT'T;0,G — GT1o,G GT1O;,G + GT19,0,G,
O = (GG + GT19,G) (G'T,G + G19;G) =
=G 'I\G + GH0,G) GG + G106 + (GHo,G) (G1o,G)
Conclusion: R}, = G~'R;;G.
Corollary. R’ is a tensor for tangent bundle T*(M™), Ry = Ry b

Gauss Curvature:

z = F(z,y), z
g11:1+F37 ZJ—nyv
gi2 =1+ F,F,, ! Xy F.=F,=0at0,0.
g = 1+ F, /1\2
X=XT,y=X

“Curvature form” (z = 0,y = 0), matrix g;;(0,0) = d;; = ¢*/(0,0).

Fx:p F:ch

K = det (
Fa7y Fyy

) = FpuFy —F.,, =0, y=0.

Calculate Riemannian Curvature: R — only this component is non-
trivial.

12,12 = FouFyy + F;?y; Ji1;22 = 2Fz2y; 922,11 = 2F3y7 z,y =0,0.

Using formulas for R;;4(0,0) in these coordinates (See Appendix to the
previous Lecture), we obtain the following results:
R =2Ry912 =2K, R;;=R] R = RP.

4pg ) P

Results are valid in all coordinates.
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Consider a pair of vector fields &, 7. Define V,, = n'V,.

Curvature:

~

Rye = V) Ve = VeV — Vi g,
,&] = [1'0;,670;] = (n' 067 /0x" — &' On /90
We have

A

R,c = Riyn'¢’ (Matrix)
for any vector bundle.

Quadratic Form (tangent bundle, symmetric connection)
Rij;kl = Rkl;ij = _Rji;kl - Rij;lk7
< ij >= — < ji > — basic vectors in A’R".

Curvature along 2-direction: let i, £ be unit orthogonal vectors (in the Rie-
mannian Metric)

=1, |£]=1, <n,&>=0.

Then the sectional curvature is:
Rijm €' ¢ = R<nANENNE> .
\—,_/
Sum by k,l
Metrics: S™, R", H".

Quadratic form R;;,; is determined by one constant R. All curvatures if
all 2-directions are the same at all points:

e Positive for S™.
e Negative for H".
e ( for R™.

Symmetry Groups are O, 41 for S™, Iso(R") and Oy, for H". Dimension
of these groups is n(n + 1)/1. Any points can be mapped to any point
(homogeneous space). Any unit tangent vector cam be mapped to any unit
tangent vector.

74



Every pair (x,v) can be mapped to every pair (y,w), where z, y are
points, v, w are tangent vectors at the points z, y respectively, |v| = |w| = 1.

Remark. Group O,, acts homogeneously on the space V,, ;, of orthonormal
k-frames (1y,...,7) in R", 7, L 7, 7| = 1.

V,,x="Stiefel Manifold”, V1 = 5"~!, V,,,, = O,.

Homework 5.

1. Prove that RP*\point is diffeomorphic to MOBIUS BAND.
b

—

A
2. Prove that KLEIN BOTTLE @ 8 s the same as

I

RP? # RP? | where # is “connected sum”

3. Prove that metric of S™, R™, H" can be written in the form

a) di* = dp® + sin®p (dQ)* , S,
where (d€2)? is the metric of S"~1 |

b) di? = dr* + 2 (dQ)? , R",

¢) di* = dx* + sh?p (dQ)?* , H" .

4. Introduce “conformal coordinates” in S™

x0 N
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Prove that

5. Prove that straight lines passing through center are geodesics for the

metric of S?:

dzdz

¥ = 4 ————
(1 +]2[?)?

Homeworks 2, 3, 4. Solutions.

Homework 2. Solutions.

1. Projection Coordinates for S* c R"*! .
domains

2. RP": (2% ....2") ~ (A2 ..., \z") ,

Uy = {a7 #£0} = (...

- local coordinates, U; = R" .

3. SO; = RP? : axis + angle < 7 .
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(p=m = (p=—n)
-1t
4. SO,y : Bjj = —Bji, BF = ¢* By ,
1 0 0
g* = [0 -1 0
0 0 -1
So we have BF = product of (¢**) by skew symmetric matrix Bi; .

5. Oy1 2 T, P, PT, 1 (in different connected components). We have T? =
P2 =1, PI' = TP — Zy x Zy . Component of 1 is

chy shvy
shy chy
6 - 7. Quaternions R* > ¢

SO3: ¢ = qqqt . gl=1, j=1,2

SO3 @ ¢ and ¢ — any |¢;| =1

a) GL,(R) has 2 components only.
b) GL,(C) is connected.

(b) Proof.
Set of matrices with distinct eigen-values is dense. Write linear operators
in basis of eigenvectors for GL,,(C):

A ... 0
) /\]7&07 )‘JEC\O
0 ... A\,

it is connected space.

(b) is proved.
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(a) Proof.
Let our field is R . Choose the same type basis consisting of 1-dim blocks
if A; is real or 2-dim blocks (A, A) for complex A\. We have for the forms of

blocks
)\j ceR — ()\J)

cosb; sinb; +1 0
A €C — g <sinbj sinbj) (O 1)
Deform \; — £1, a; — £1, b; — 0.
Now remember that
-1 0
0 -1

is connected with 1

I
£ eR?

Multiplying our matrices by

-1 0
1= (0 4)
many times we see that there are 2 components (det > 0, det < 0) .

(a) is proved.

Homework 3. Solutions.

1. Already was solved in HW2.

2.
suy o (40) L e = woe

vectors (a,b) = ¢, (¢,d) =7

¢, =1, @mmn=-1, n =0 =
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a> = > =1, |?=d? = =1, aé—bd =0

(

SLQ(R) €1, €2 — ae; + b@g , cep + d62
ad —bc =1, a,bc,déeR

solution:

e
Q>
~
Q
Ql
|
>
=Tl
I
—_

Take basis
e = e + ey, € = e1 — 1leg

er = (e+€)/2, e = (e—¢e)/2

In the new basis we have

e — %[(anLd—i(b—c))e + (a—d+i(b+c)>é} = qe + pe
e — %[(a—d—i(b—l—c))e + (a—i—d—i—i(b—c))é} = pe+ qe
where
qq—pp = i((a-f—d)Q-F(b—C)Q—(a—d)Q—(b—Fc)Q) = ad—bec = 1

4. SLy(R) = S! x R? (?)

B cosy sing Ap
A€ SL(R) = A= (—singO COS@) . <O 1/)\)

where A € RT\0 ® R, pu € R.

Remark. Every “semisimple” Lie Group is topologically a product:

G =2 K x RY, where K is a “compact group” and RY is a “Borel
subgroup” (upper triangle).
4.

di* = d#* + sin®0(dp)* , S* c R?

For polar coordinates in R?: 2 = pcose, y = psing we have
di* = dp* + p*(dp)?

79



H?: 22 —2%2 —¢? =1
z = chf , x = shfcosp , y = shfsing

—dI> = d#* + sh*0(dy)?

Homework 4. Solutions.

1. We have parametrization (physics)

1 w
Ch = —F y Sh = —_———
v 1 —w? v V1—w?

because
(chy)* — (shep)® = 1

Remark. Physics: let w = v/c .
Lorentz transformation:

1
IO = ct U/C /1

= _— I‘/O +

V1—=v2/c? V1—=v?/c?
1

. v/c

x
— —xlO + —Ill
V1—0v%/c? V1—=v?/c?

m/

So we have

1 , v/c?
- - ¢ 4 =
V1—v?/c? 1—v2/c?
r = #t/ ; !

V1—0v%/c? " V1—v%/c? !

Note, that we get the Galilean Transformation
t ~t , z ~ 2 4+ ot
in the case v/c < 1.

2. a) Iso(R?*), = shifts + rotations SO, .

1 — SO, — Iso(R*), — shifts = R?
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b) Iso(R?*)_ = reflection + shift along the reflexion line .

y
LA

B

3. Already was solved for RP": 7 # 0, (2%...,2") ~ X(2% ..., 2"),
(n+1) systems :

4. S C R Two such domains for T? , g = 1.

Two such domains for any g
Q Q Q Q (glue them along the boundary
strips).
Lecture 17. Differential forms.

Last chapter.

1. Geodesics, Calculus of Variations, Fermat Principle, Lagrangian, Ac-
tion Functional (Length and “Kinetic Energy”=Natural Parameter),
Euler-Lagrange equations, Momentum, Energy, Conservation Laws,
Examples.

2. Curvature of curves, Curvature of Hypersurfaces in R, Quadratic

(2nd) Form, Principal Curvatures and Gaussian Curvature: definition
via the special coordinates.
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3. Vector Bundles and Differential-Geometrical (Linear) Connection, Cur-
vature, Gauge Transformation for Connection and Curvature.
Parallel Transport. ‘

4. Tangent Bundle and “Christoffel Symbols”, Cotangent Bundle, Ten-
sor Bundles (Inner Products), Geodesics (new definition), compatibil-
ity with Riemannian Metric. Symmetric Connections. Formulas for
Christoffel Symbols and Riemannian Curvature. Special Coordinates.

5. Symmetries of the Riemannian Curvature Tensor, Ricci Tensor and
Scalar Curvature. Examples. Einstein Equations (n = 4). Curvature
for n = 2. Gauss Theorem. Curvature for n = 3. Curvature of R", ",
H".

Next chapter. Differential forms.

e m = 0: Differential 0-form is a scalar function

flx): M™" — R.
e m = 1: Differential 1-form is a covector field w written in the form
w= sz(x)dx’
e m = n Differential n-form = object of integration:
Q= f(x)dz' A... Adz"™, (locally)

such that for x = z(y) we have

ox’

Q= f(z(y))da' A...ANd2", da' = i

dy’, (summation in j)

Definition. Differential k-from in M™ is a smooth quantity 2 which locally
in every Chart of Atlas (z',...,2") can be written in the form

Q= Zfl(x)glx“ AL .. Nde'™ = frda!,

I dxl
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where I = (iy <'iy... < i), and for z = x(y) we have
Q= fi(z(y))da' = g;()dy”, dy” =dy” A Ndy*, ji<jo<... <ji

The symbols dz’ form an Associative Algebra under multiplication A
(exterior product), such that

dz' A da? = —da’ A da,
(bilinear, associative.)

Examples:

1.

]

ij 1<j

(Z a;dz") A (Z b;da’) = Z abjdz’ Ndx! = Z(aibj —a;b;)dz’ Ada? .
J

2. Change of coordinates:

oxt .
xdy], (summation in j)

oyl

r=ux(y), dr'=

3. Corollary:
(a) k <n.
(b) Q, = f(z)dz' A... A dz™.

Lemma. C differential forms is a ring A*(M™, R) such that every C*°-map
f:M™ — N™ there is a natural “induced map” of rings:

JP N (N™) = AT (M™),
commuting with all algebraic operations (addition, multiplication A).

Proof. “Change of coordinates”

3; dy’  (sum)

x = z(y), yi>x, = |dzt g

commutes with change of coordinates in N and M and with all algebraic
operations like A.

83



For scalar functions we have:
o: N =R, f"o(y)=¢(x(y)) by definition.

For forms ,
7

frdx = oy

products are mapped into products.

(z(y))dy’ by definition,

The proof is finished.

Homework 5. Solutions.

2.
b
b _
aA a
VN SEEEEEEE RP? § RP? =7.
/ — K2\ MOBEUS & MOBEUS
Mobeus b

band (dashed)

3. Already was done

4. “Conformal coordinates” in S™

SN = R”

zl...zn

I
:
X
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)2
dl* = const - M ?
(14 [z[?)?
a) n =1 (line): =z = 2tgy

b) n = 2 preservation of angles

5.
dzdz
2l <1, dPP = 4 —
g (EAERE
Central line = geodesics? Metric does not depend on the angle ¢ !

Lecture 18. Differential forms. De Rham
operator.

Differential forms.
Consider a C*°-manifold M™ with Atlas of Charts. Locally k-forms are:

Q= Z firin (0)dz™ A LA da'™

11 <i9<...<ip

Multiplication: Associative and

dx' A da? = —da? A dz'.

QO=0 for k>n
Q= f(z)dz' A... Ada" for k=mn
Q= f(x) for k=0

Change of coordinates: © = z(y)

ox’

. f*
dr' = 4
OyJ

dy’ (sum).
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Functorial properties: g: M — N, x = z(y).
Yy x

ox’

5 W)y

GQ=>" filx(y)da" A.. Nda™, d' =

Algebra of forms.

Integration of forms.

1.
/f(x) =+f(P), k=0, +£P = “point with orientation”.
+P

/f(a:)dxl A ... Adx" = ordinary integral
D

D-domain (local). To integrate over large domains, one can write
/ Q=) ¢,(x)Q
D q

where

Z%(%) =1, ¢, isa C™ function,
q

¢q = 0 outside of small domain Dy C M". The family ¢, is called
“Partition of Unity”.

3. Let Q be a k-form and g : D* — M", g is C*. By definition:

/ Q= /g*Q — integral of k-form in k-ball D*.
(DF) D

86



Properties: Integration of forms does not depend on local coordinates both
in M™ and D* (restrict the k-form to the k-dimensional body and integrate).

Differentiation of forms:
d: AF(M™) — AFTH (M)
1. df is usual differential.
2. d(dx™* A ... Ndx') = 0.
3. d(fdx"™ A ... ANdx™) =df ANdz AL A dxt

Example:

ﬂﬁdﬁ)=dﬁAdﬁe:§:§£dmN«¢ﬁ=:§:(gﬁ-gﬁ)dﬂ/wmi
i,9 i<j

Examples of forms:

Momentum (p;) in Calculus of Variations. Differential of function
df =3 2Ldx'.

Electric field (E;)-covector field.

2-forms: Magnetic field in R3. B = B,sdx®dx”’.

Electromagnetic field in R* = (2°, 2!, 22, 23).

F = Fyda' A da? = cFy;dt A da® + Bugda® A da”,

i,j =0,1,2,3, o, =1,2,3, 2° = cdt, Fy, = E, — electric field, Bog = F.p
— magnetic field.
Symplectic 2-form in the cotangent space T, M™ with local coordinates

('Ilapi)
Q= da’ A dp;
i=1
QA...AQ — volume forms in T,(M™).
—_—

n times

It defines nondegenerate inner product given by matrix

0o 1, _
95=\ _1, 0 skew symmetric.
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Kéhler Riemannian Metric in Complex Space (Manifolds) with complex
linear coordinates (z%,...,2").

A’ = g,5dzdz" > 0.
a7ﬁ

Coordinates: (z!,...,2" 2!, ..., 2"). Associated 2-form is

)
_ _ gL« =8 _ ;
ngﬁga’ﬁdz NdzZ", z=ux+1y.

Examples: n=1.

dzdz : R?
di* = gopdz*dz’ = dzdz  S?

(L= H?
1 dz ANdz dx N\ dy

= — Area Form.

YRR T U@y

Theorem: The operator d is well-defined in A¥(M™) by the definition above.
It commutes with C*°-maps g : M — N and has the following properties:

Lod(Q AQ) = (dQ%) A+ (—1)ka A (dSY).
2. dod=0.

Proof:

a)

_ Of oa'
Ozt Oyl

A(g" (@) = g'df = dlg"f) = d(f (@) dy = g'df.

d(dx") = d(0) A dx' =0,

, dx' 02t ,
d(g*da’) = d | S—dy’ | = ———dy? ANdy’ =0.
(g"dz") (dy] y> gy Y N
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So d commutes with the map g* for k = 1.

For k > 1 our result is obvious by the following reason: d(dz™ A ... A

dz'*) = 0. Let us prove now that the Statement 1 of the Theorem. Let
O = f-da™ A...Nda¥, Q= g-da?t AL .. A da?.

A QU AQ) =d|[(f-dz" Ao ANdZ®) A (g-da?t AL A da)] =
=(df -g+ f-dg) Ndx" A ... Ndx™ NdxTt AL A dat =
=df Adx" AL AN dx™ A gdatt A LA dai
H(=DFfda™ AL ANdx'™ ANdg Adat AL A da?t =

= (d) A+ (=1)FQy A ().
Let us prove now that d od = 0.
i i i i of . ; i i
d(f-dz"™ N..oNdx™) =df Ndz™t AN dxt :@dwj/\dxl/\.../\dx’“.
dod(f-dx" A.. . Adx™) = d(df) Adx" A. . . Adx™ —df Ad(dz™ A. .. Ndz"™) = 0.

Theorem is proved.
We have:

. 0A; 0A; - .
d(A;dx’ = J ?)dxl/\dxj.
) =2 (axz o
covector field N

S

~—
“curl” =2-form

Let n = 3, By — 33, B13 — —32, B23 — Bl.

ox! + Ox? + ox3

N

B! 9B* 0B
d( Biodz' Adz®+ Bysda' Ada®+ Bysdr?* Ada®) = (a 0 0 )dxl/\de/\dx?’

J/

g

divB

Faraday Laws:

n=3: a)dB =0, Magnetic field
b) dE =128 E = E,dx*,
n=4: d(Fy;dz'Ndz?) = 0. Electromagnetic field



Lecture 19. Differential forms. Cohomol-
ogy.

Consider the algebra of differential forms on a manifold N™. Let Q €
AF(N™). Then dQ2 € A*Y(N™). Consider a map f : M — N. Let us
check, that f*dS2 = df*<).

Proof. Let ¢ : N = R, f*o(y) = ¢(z(y)).

0 , 0 , 0 oxt .
Paot) = 1 ((55ds') = Sl o) = 54 () 3y =
S"9) i OK. fd=dr,
oy’

for scalars and dz’. But the product A commutes with f*. Every form is a
combination of ¢(z) - dz™* A ... A dz™. So we have

frd=df* forall k>0.

Homology (Cohomology).

H*(M™ R) = Kerd/Imd in A* (M™).

Kerd C A" : {Q ] dQ = 0} closed forms
Imd C A": {Q] Q=d} exact forms

Examples: a) k =0 = = ¢ is locally constant.
Conclusion: H°(M™ R) = R?, where p is the number of components.

Closed Forms.

1. Forms with constant coefficients in R™ or in T" = R"/Z": Q =Y a;dx’,
ay = const.

2. Closed 1-form

W= Z%(I)dxl, dw = Z (?}ﬁj - g?ﬁ;) dz' A da?.

1<j
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oy Oy

dw =0 & - — —— =0
“ oxt  Oxd ’
T v,
() = /w = d¢ = w if ¢ is well-defined. @1
XO y2
o
Necessary condition: dw = 0.
Stokes Formula. Consider an oriented n
manifold M™ with boundary
OM™ = W™ ! with “induced” orientation. M

What is it? W

Consider “external” normal vector n to W C M™ and tangent frame 7 to
W. Let (n,7) form an oriented frame in M™ at the point P. We say that 7
is an oriented (n — 1)-frame to W in the induced orientation.

Theorem. For every (n — 1)-form Q in M™ we have
[ fo=[ [
Mn

Wwn—1

Wn=lis a closed C* manifold, M™ is compact “manifold with bound-
ary W7,

2. For every manifold N, n—1-form  in A" !(N) and mapping f : MY —

N we have
/.../f*Q:/.../f*dQ7

Wwn—1 Mn

Proof for the case M™ = I" (cube) with coordinates (z!,...,z"), 0 <z’ <1,
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0,2 (1,2)

W = oI" (I"="ball”).

00 X (10

a) Case n = 1. We have

b
/\If’d:v — W(b) — W(a), Q=U(z). — b

a

b) Case n > 1. We have

Quor =Y Wida' AL Adai AL A dz" =Y 00,
i=1 i=1

where da® means that this multiplier is omitted.

Consider every summand QY separately.

: /.../Qgpz/.../gg):
; -

[x=0,1]

—/---/\I/i(xl,...,xi:0,...,x”)dm1/\.../\d/x\i/\.../\dx"} =

:(—1)i_1/---/8i\11i(x1,...,xi,...,x”)dxl/\.../\dxi/\.../\dfl:

:/.../dggx

In
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Let n = 2. Orientation for n = 2:

d C

v Here a = (0,0), b= (1,0), ¢ = (L 1),
d=(0,1), (n,7) = (x!,2?).

a x1 b

Q= (z", 2?)da' + Uy(a', 2%)da?,

o ov
dQ:(af( La?) — 321( 2))dx1/\da:2,

1 0 0

/Q:/ \IJI(xI,O)dx1+/ \111(1,x2)dx2+/ \Ill(xl,l)dxl—l—/ \111(0,x2)dx2
0 0 1 1

aI2

Let Q = U dat for n = 2. We have
oV,

(N{ld 2hdet = —Z L dxt A da?

dQ) = 927 927

1

//m:‘j‘ z&dde=—/M%%wwm%%wum=

0
1

- /d:cl (T(2",0) — (¥(a',1)).

0

1
/Q / Wy (2t 0)da’ —/ Wy (2t 1)dz!
0

oI2

We have

These two expressions coincide.

“Ordinary homology” for the C'*° - manifolds:

0

°
o ¢:IF — M" - “singular cube”. I:I
0 1
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K oF — M™ — “singular simplex”. *
ob=<0,1,....k>. 0 1
*——0

¢, 1 are assumed to be C*° maps.
“Boundary”:
OIF = 9(IF1 x 1Y) = 9(I* 1) x I' + (=1)k-L1*191L.

Ok =3 (=1) < 0,1,...,4,...,k >= S (~1)cF 1.
=0

i=0
“Degenerate cube” [¥ ———— k-1 L M,

projection
Every form 2, defines a linear form

C* — singular cubes =R
C*° — singular simplices = R,

(integration of €2 along singular cubes, singular simplices, degenerate cubes
— 0).

Homework 6.

1. Find all geodesics for S™, R™, H" (for H" in P - model and in K -
model.

2. Find all closed geodesics in torus T? with euclidean metric.

3. Find all closed geodesics in RP? (metric of constant positive curvature).
4. Prove that parallel transport along any path preserves inner product
y(8) = [ (2)],

\/\ &0 (n(), () = const ifVan = 0, VaC = 0
ne) ) (Vg = 0).
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Lecture 20. Differential forms and tensors.
Categorial properties. Cohomology and Stocks
formula. Homotopy invariance of Cohomol-
ogy.

Category of C'*°-manifolds and C'*°-maps. Functors like spaces of tensors
with low indices. Differential k-forms AF(M™): exterior multiplication A,
operator d and integration, their properties. Stokes formula fro integration.
Singular cubes and simplices, boundary operator d. Cohomology, forms and
singular complexes.

a) HE(M™ R) (forms).
b) H*(M",R) (simplices and cubes).
c) Hp(M™ R) (simplices and cubes).

a) Kerd / Imd = HYM"R).

closed forms exact forms

b) Kerd*/ Imd* = H¥(M™ R) (cubes, simplices).

cocycles  coboundaries
c) Kerd/ Imd = Hp(M™ R) (cubes, simplices).

cycles  boundaries

OIF = 9(IF1 x I') = 9(I* 1) x I' + (=1)k-L1*191L.
ook =S (=1)ioF ' ot =<0,1,... iy k>

i=0
“simplicial chains”:

Z/\S(Uk,qbs), bs 0" — M™ (C™).

“Simplicial cochains” = functional ¢ on simplicial chains:

i(chain) = ¢ [Z As(o", @)] = W(c*, ¢.).
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“Boundary operator:” 0 : k-chains— k — 1-chains (linear).

n

a<0k7¢) = Z<_1)Z(< 07 17 s 7/2'\7 e '7k >7¢)a

1=0

where ¢ is naturally defined at the boundary simplices.
“Coboundary operator:” 0 : k-cochains— k + 1-cochains.

< d%a,b >=< a,0b >, ais a cochain, b is a chain.
“Special cochains” = C'*°-form (2

<Q,b>:/Q:Z)\S / Q, bis a chain.
b

T (o)

“Stokes formula”

/dQ =< d),b >=<Q,0b >= /Q,
b ob

Conclusion: Stokes formula defines a correct homomorphism

HF(M™ R) — HE

simplices (Mn7 R) .
In Algebraic topology:
Hk

simplices

(M",R) — Hom(H,(M"),R).

Isomorphism
HF(M™, R) = Hom(H,(M™),R)

was claimed by Poincaré in 1895 and proved by De-Rham in 1930s.

Lemma 1. Cohomology H¥(M™ R) form a ring (operation A) such that

aAb=(—1)"bAa, a€ HF acH),.

Proof. Let Q, Q' represent a, b, i.e. Q +Imd) = a, Q' + Imd) = b. Define

aANbZ (QAQ +Imd) in H*(M™,R).
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We have
Q+du) AN(Q +dv) =QAQY +duNQ +QAdv+duAdv,
but
du N =dun), QNdv==2d(QAv), dudv=d(uAdv).

The Lemma is true.

Instead of R maybe any ring, for noncommutative ring may take place

a ANb# £b A a. For associative rings multiplication of forms and homology
is associative.

Definition. C* maps g,h : N — M are homotopic if there exists a C*>
map F': N x I — M such that F‘tzlzg,F}tzozh.

Theorem. For homotopic maps ¢, h induced maps of cohomology coincide.

g =h*: HEQLR) = HA(NR).
x Yy

Proof. Let Q € A*(M) be a k-form and F*Q € AF(N x R) be a k-form.
Coordinates in N x R are y',... 4" t. Every form can be written u =
a + dt N\ b, where a, b do not contain dt.

Define operator:

D : AF(N x R) = AFH(N)

by formula
1

Du:/b(t)dt, u=a+dtANb, a— 0.
0
We have:

D

t Nx|I  Lemma. Ddu+ dDu = u‘t:l - U‘tzo-

du = dya + dt A i — dt A dyb,
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1 1 1
Ddu:/ ddt—/ dybdt:a‘tzl—a‘tzo—dy/ b,
0 0 0

1 1
a}tzl = u‘tzl, a‘tzo = u|t:0, /0 bdt = Du, dy/o bdt = dDu.

0.K.
Finally we have for every closed k-form €2 in M:

but

Q— F*Q — DF*Q in AFH(N).

t
N dQ =0, dF*Q =0,
0
y
so we have

dD(F*Q) + DaE=q) = F*Q|,_, — F*Q|,_, = "0 — h*Q.
So g*Q = h*Q + Imd,
g-=h*: H* (M) — H*(N).
Theorem is proved.

Corollary. For every contractible manifold M like point, Ball, space R™ and
so on cohomology are the same:

o R, k=0,
H (point) = { 0. k£0.

Poincaré Lemma. For every manifold M" every closed k-form €2 is “locally
exact” (k> 0):

) = dw in contractible open domain U C M™".
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Lecture 21. Homotopy invariance of Co-
homology. Examples of differential forms.
Symplectic and Kahler manifolds.

Homotopy invariance of cohomology.

g:N—M

CF —maps: 3N Ly

are homotopic if exists a map F' such that:

Fis NxI—M, F|_ =g F h.

t=0
Theorem. If g and h are homotopic, then

g* =h*: H*(M,R) — H*(N,R).

Proof. Let u € A*(N x I). Then u can be uniquely written as:
w=a-+dANb=ar(y,t)dy’ +br(y, t)dt A dy’.

Define the following operator D:

1
Du = /b](y,t)dt dy’.
0

Lemma.
Ddu + dDu = “|t=1 — u‘tzo.
Proof.
du = dya + dt A a — dt A d,b,
1
1 1
t dyDu = dy/ bdt = / (d,b)dt
0 0
0 y
N
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Ddu = D(d(a+ dt Ab)) = D(dya+ dt Aa— dt A dyb) =

1
= a‘t:l — a‘tzo — dy/o bdt = a|t:1 — a|t:0 — dDu.

0.K.
Proof of the Theorem.
F:—-NxI— ]\94,
F*dQ = df*Q = 0,
dD(F*Q) + DaE=q) = F*Q|,_, — F*Q|,_, = k"2 — g*Q.
g =h*: H*(M) — H*(N).
O.K.

Homotopy equivalent manifolds N, M:

4 N—-M-—=N
] P

such that

Y- ¢ is homotopic to Iy : N — N
¢ -1 is homotopic to 1y : M — M.

Corollary: M and N are homotopy equivalent implies:
¢ : H*(M)— H*(N)
v* . H*(N) — H*(M).

are isomorphisms of rings.

In particular, H*(R™) = H*(D") = H*(M) = H*(point), where M is
any contractible manifold (map 1 : M — M is homotopic to const:
M — point).

Poincaré Lemma. Every closed k-form Q is “locally exact” (k > 0).

Examples of forms
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1. k=0,df =0 = f = const (in every component).
H°(M) =RP, where p = number of components.

2. M™ is an oriented manifold. Every n-form  is closed: d€2 = 0 (obvi-
ous). Riemannian metric in M"™ generates a “volume form”

Q=d"oc =/det g;jdz' A ... Adx" locally in oriented atlas.

Form 2 = d"o is closed and not exact for closed (compact) manifolds
because

/ (2 = volume M > 0.
MTL
So H™(M™) # 0 for closed oriented manifolds. For connected nonori-

ented manifolds and and manifolds with boundary we have H™(M") =
0 (not proved yet).

3. “Nondegenerate 2-forms”:

Q=" Qijda’ Ada’ (locally)

i<j

det Qij 7é O, Qij = —jS we have n = 2k.

Theorem. For every 2-form in 2k-dimensional manifold we have:

1
HQ/\.../\Q:\/detQZ-jdxl/\.../\dx%.

k times

Proof. Let M* =R"™ and Q;; = const.
Step 1. Choose such basis that

0 1 b
Qijz(_]l o)’ szldx/\dpi.

Step 2. Proof Theorem in this basis:

k k
(Z dz* A dpi> =kl dz' Ndpy A ... Adz® A dpg.
i=1
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We have:
(dz' A dp;) A (dx? A dpj) = (da? A dpj) A (da’ A dpy).

Step 3. Return to the original basis. Both sides are n-forms and
transform in the same way.

So Theorem is proved.

Lemma. Every skew-symmetric inner product can be reduced to the
form

0
0

o o=
o O O

Proof (for nondegenerate forms). For every vector e there exists ¢’
such that < e,¢’ >= 1. Find orthogonal compliment to the subspace
(e,€’). Tterate this process. Our Lemma follows.

Remark. ,/det();; is a polynomial of the matrix entries if 2;; = —€;.
It is called “Pfaffian”.

Definition. Manifold M?* is called “simplistic” if there exists a 2-form
Q;;dz’ A da? such that det Q;; # 0 and dQ = 0.

Examples.

a) T.(M*). We have

k
Q= da’ Adp;.

i=1
b) Kéhler (complex manifolds). Complex coordinates (z',...,2") (locally).

0 < gagdzadzﬁ — Riemannian Metric.

1 o _
Qzézﬂga/gdz ANdZP, dQ =0, det gap # 0.

Corollary. Every simplectic manifold is oriented.

Proof. OF = /det Q;;dx' A ... A dx?! is a “volume form”.
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Lecture 22. Symplectic Manifolds and Hamil-
tonian Systems. Poisson brackets. Preser-
vation of Symplectic form by Hamiltonian
System.

Symplectic form. M", Q, dQ) = 0, n = 2k, Q% = k!d"c — volume.

Property (without proof): locally there exists a system of coordinates

', ..., 2% pi,...,pp such that

k
Q=>"da' Adp;.

=1

Example. Consider cotangent bundle of a C* manifold M" = T,N*, with
coordinates (z,p). Change of coordinates
Oz’

r=2x(y), D; =D

Lemma 1. 2-form (2 is well-defined (independent of the choice of coordinates
in V).

4 k . e
Proof. Q =Y dx' Adp;, Q= dy* Adp;. Why Q = Q.
i i=1

8xi+ 0?rt "
3 pza o

2 .0
Dy’ A d; = ZdzﬂAsz o+ o Ay =
, Y
J

- Z —dyf Ndp; = dz' Adp;.

dp; = dp;

0.K.
More generic simplectic form in T, N is

Zdw/\dpﬁ— —B=Qp, B=)Y bj(x)ds'Ada?, dB=0.

1<j
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For k = 3 it is “Magnetic Field” (correction of simplectic form).
Hamiltonian system in: T.N = M is defined by “Hamiltonian” H(x, p),

e Ip;
. oH

Another form: Take covector field (dH). Take inner product given by
simplistic form Q = > dx’ A dp;.

0 1
o (5 1),

Construct vector field ng = Q7' (dH).

Dynamical System.
z=mn(z), z=(z,p),
t=H, p=-H,.

“Poisson Bracket”.

It provides the structure of Lie algebra.
For any functions f(x,p) we have:

f={H.1}
We have {H, H} = 0 — conservation of energy.
Geodesics. M =T.N, H = 1¢"p;p;. Lagrangian L = 3g;;4"7,

OL oL

L o=
gii P

H =i .
v D

Euler-Lagrange equations:

Pi = o @+ Tl ih = 0.
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Theorem 1. In every compact closed simplectic manifold M" (n = 2k)
with form 2 (nondegenerate, we have

H¥(M)#0, j=1,... k.

Proof. We know that QF = k! volume, so [ QF # 0. Therefore H* # 0,
because 2% can not be exact (if 2% is exact then Q2% is exact.)

Theorem 2. For any simplectic manifold M"™ and Hamiltonian system with
Hamiltonian H : M™ — R simplectic form is preserved by mapping S; :
M™ — M™ (time shift by our system).

Proof. Locally we choose such coordinates (x',... 2%, pi,... p) that Q =
k

>~ dx' A dp; (Darboux).

i=1

Our system is:
oH ., OH

7

JE— s l“ e
0z Op;

Small time shift is:

Se: pi = pi + pit + O(t?)
' — '+ 't + O(t)

Sfpi =D + pit + O(t2)
Sia' =2 + @'t + O(t?)

We have
Si(dx' Adp;) =) (da'+i't) A(dpi+pit) = [ ]/\[dpl ] —
. H 4
:del/\dp,-—i-t[a ;—dx' ANd ]
- Opi

O*H O?’H

= t A d i -d J d i - dpy, =
+;[ 0p; ]/\p+3pi3 S x’aﬁ xA kpk}
=0



Theorem is proved.
Remark 1. “Multivalued Hamiltonian” = closed 1-form dH.

Remark 2. “Poisson structure”: €2 may be degenerate, Q0* is well-defined
but degenerate (Q* = Q).

Remark 3. The Poisson Structure is a symplectic inner product of
covectors which defines a Lie Algebra of functions (the Poissoon Bracket):

{f. 9} =<df.dg >q
{r,95, 0y + o, 0}, F3+{{h. f}.9} = 0.

Here we have QY = (Q)~! if it is nondegenerate. This definition implies
in that case dQ = 0,Q = Q;;dz" A da?.

Remark 4. According to the Darboux Theorem, every nondegenerate
Symplecttic Geometry with d2 = 0 is always "flat”, i.e. there exists system of
local coordinates such that € is constant (and reduced to standard canonical
form.)

Homework 7.

1. Let action functional is
Y il

where v = {z'(t)}.
Prove that the Euler - Lagrange equation depends on the form
d (AZ- d:vi) =
(only).
2. Let ~(¢) be a plain curve, closed.
0 Prove that:

]{k(s) ds = 2m X n , n = integer

where s is natural parameter and k(s) is curva-
ture.
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3. Calculate area form in R?, S?, H? in the spherical (pseudospherical)
coordinates (polar for R?).

4. Prove that

p xdy — ydx
= ¢ —
b x2 + y2
in the plane R?.
5. Let a complex line bundle C! be given over M™, (z!,... 2") with
an imaginary Differential - Geometric Connection {AY dx/ = (Al da’},

Uucmm, AJ-UReal € R. Let the bundle is “unitary” (i.e. in the domains
U NV change of basis ey(z) = gV (z)ey(z), gV € U =S (e¥)) .
Prove that 2-form
H = (HU) = (dAl[{eal) = (dAKeaO
in UNYV is well defined as a closed 2-form in A*(M").
dH = 0

(first Chern class). Its integrals along the closed 2-submanifolds are always
2mn,n € 4.

Remark. This fact (well-known in Topology of characteristic classes)
was also discovered by Dirac in 1930-50s in process of Heisenberg-Schrodinger
quantization of "Magnetic Monopole”: the Hilbert space of state is in fact
space of sections of complex line bundle where vector-potential of magnetic
field is a covariant derivative of sections. (The Feinman quantization through
the path integral leads to different topology: the Action functional for mag-
netic monopole is in fact a closed 1-form on the space of paths whose periods
along 1-cycles in this space should be quantized, i.e. they should be equal to
2mn,n € Z assuming that the Plank constant is equal to one in our units.)

Lecture 23. Volume element in Compact Lie
groups. Averaging of differential forms and
Riemannian Metric. Cohomology of Homo-
geneous Spaces.

Homogeneous spaces. M"™ = G/H, G — Lie group (compact).
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Theorem. Let group G be compact. There exists Riemannian Metric in
M = G/H st. g*gij(x) = gi;(x), g € G, g : M — M, g(x)- action of the
group G.

Remark. We assume that there exists a G-invariant volume form (2 in
the group G. We call it do(g).

Proof of the Theorem. Take any Riemannian Metric ¢;j(x) in M. Con-
sider family of metrics g*g;;(z) = gl’;(x) in M, depending on g € G as
parameter. Integrate:

/ g4, (2)do(g) = Gy 2).
G

1. This is a Riemannian (positive!) metric.
2. This metric is G-invariant because for ¢y € G we have
WGy = / Vg / g (x)do(g) = / g4 (x)do(¢g)
G G

The last identity is based on the following:

Lemma 1. In every compact Lie Group there exists a double-invariant
volume form.

Proof. Consider left-invariant metric in G : g;; and its volume form € :
h*gi; = gij, h*Q = Q. But this n-form is also right-invariant because for
g — hgh™! this form maps into itself (space of right-invariant n-forms is
1-dimensional and group is compact).

So the Theorem is proved.

Theorem 2. For homogeneous manifolds with compact group G: M =
G/ H every closed differential form is homologous to an invariant closed form.

Proof. Let dw = 0 in A*(M). Consider the integral
7/
G=— [ hwdo(h)
i/

]G]:/da(h), heG, h:M — M.
G
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1. This is an invariant form.

2. This is a closed form:

o=~ [ Wwdo(h) = - [ 1*(dw)do(h) =
dw_|G|G/h do(h) |G|G/h(d)d(h) 0.

3. This from represents the same cohomology class as w: all forms hA*w
belongs to the same cohomology class if the group is connected. So
all “integral sums” belong to the same cohomology class.

So our Theorem follows.
Examples.

1. Spheres S™, G = SO,,11. Only invariant forms are k£ = 0 (scalars ) and
k =mn. So we have:

HO(S™) = H"(S™) = R.

2. Tori T™ = R"/Z", G =T" (abelian group). Spaces of invariant forms
are AFR™. All of them are closed: dw = 0 for invariant forms, so
H*(T™) = N(vy, ..., 0,).

3. 8™ x ...x 8™, Forms vy,...,v;, dimvy = k. We have v; = 0 only
relations.

H (™ x .. x S™) = {u,... v, 02 = O},

4. Cohomology of RP?*"*1 are the same as for S*** (| H*(,R)|).

Cohomology of RP?** are 0 (k > 0).
Cohomology of CP™ are generated by 2-form (2 and its powers:

1,Q,0%...,0"

Action of SO,, and U, in R" and C". Invariant differential forms:
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1. R*, dzt, ... daz", A € SO,,.

A(dz") = Zaé-dxj, AA = 1.
J

Invariant differential forms are:

k=0, scalar, k=mn, dz' A...Adx"

No other invariant forms!
2. C", dzt, ... d2"dzt, ..., dz", AcU,.
A(dz') =3 abd?,
J
A(dz) = Y akd?
J
Invariant forms are:

k = 0 — scalars.

k=2 (2-forms) £ 3" dz/ AdzT = Q.
J

k=21, QL

For | = n we have the “volume element”

in(%) dzP A dZVANdEE AN dE
For n = 1.
R? = C': dz, dz, A= (") = U;.

dz — €%dz

d5 s o=id gz ‘ dzNdz — dz Ndz.

No other invariant differential forms for C* and G = U,, (with con-
stant coefficients).

Important homogeneous spaces G/H with compact group H.
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1. 8" = 50,41/S0,.
SQnil = Un/Un—l-
Sl = Sp,./Spn_1.

2. CP" = Un+1/U1 X Un = SUn+1/Un

3. Stiefel Manifolds.
Vo = S0, /SO, (orthogonal k-frames in R").
V.5 = Un/Un_y (complex version).

4. Grassmann Manifolds.
Gni = 50,/SO, x SO, _j.

5. Lie Groups (compact, simple) G
G={GxG/G}, g— highy', hy € G, hy € G.

6. “Principal” homogeneous spaces
G=G/(1),H=1.

Lecture 24. Volume element in Compact Lie
groups. Averaging of differential forms and
Riemannian Metric. Cohomology of Homo-
geneous Spaces.

Theorem. Let G be a compact Lie group with invariant volume element
do(h):

For hy, hy: G — G, ¢ :h — hihhy' we have

¢*do(h) = do(h).

Let G act (from the left) in the manifold M h: M — M, h € G. Group
G is connected. Then

1. Every closed differential form is homologous to an invariant form.
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2. Operator of “Averaging” maps H*(M) as a unit homomorphism:

7/
T=— | hwds(h), hea,
) (h)

O=dw = do=0, w—w=dv, w=dv = w=dv,

1.e.

H*(M) = H (M) < calculated with G — invariant forms only.

mv

Proof was given at the previous lecture.
Examples.

1. S", G = SO,41, H = SO,,. Invariant forms k = 0,n only. H° = R,
H" =R.

2. G=5%=8U,, H=(1). Invariant forms k =0, 1,2, 3
AN =R, AN'=R A?=R? A’=R,
d: A" = A? is an isomorphism.

3. Ups1/Uy x U, = CP" = SU,+1/U,. G = SU,4+1, H=U,. H acts on
C™ (tangent to 1). Constant forms in C™ (all closed).
Basis: dz A ... Adz* ANdZP AL AN dF type (K D).
Action: a € U, . o
A(dz") = ) ajd2?,

J
A(dz') = Y abds?
j

For n = 1.

dz — e?dz . . _
A7 s o=tz = invariant form dz A dz.

k > 1: invariant form are > dz* Adz' and all Q¥ k =1,...,n.
i=1

No other invariant forms (!).
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Cohomology rings.
1. ToriT =8 x ... x St =R"/Z"

H*(T") = A (v, ...,v,), dimV;=1.

2. Spheres S, G = SO,,;1. Only invariant forms are k = 0 (scalars ) and
k =n. So we have:

HO(S™) = H™(S™) = R.
3. M x ... x 8" G=950,,11%...xS0,, 1.
H*(S™) = {1,v,|v = 0}.
H*(S™ x ... x8™) = A(1,vn,,...,0p,|v] =0), no other relations.
4. CP™.

H*(CP™) = {1,u,v? ..., u"}, dimu=2, v""' =0, G=SU,,1, H="U,.

5. Homology of V,, i, G}, can be computed using forms

H*(,R) =2
Vn,k = SON/SOn—ka Gn,k = SOn/SOk X SOn_]€7
Vn((,:k; - Un/Un—M G;(ik = Un/Uk X Un—k-

6. Lie Groups G (compact): G = G x G/G.

Lecture 25. Approximation and Transver-
sality.

Differential topology. C'>°-manifolds, Atlases, Charts, Orientations, C*-
maps, rank of map, C°°-submanifolds: (existence), M™ C RY (M™ compact).
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Approximation. Every continuous map of compact manifolds f : M" —
N™ y(x) can be approximated by homotopic C*-map g : M" — N™:
y

max | (2),9(2)| < e

More exactly. Let f : M — N be C%map which is C* in open domain

U C M™. For every domain V, V C U C M™ approximation g : M™ — N™
can be chosen such that f =g in V.

% vc M (“Locality Property”.)

%
v
Lemma. For ¢ > 0 small enough maps f and g are homotopic.

Proof. Take Riemannian Metric g;;(y) in N™.

€ %) For ¢ > 0 small enough geodesics joining
f(z), g(z) is unique in the ball of radius
f(x) 2e.
Our homotopy it such that every point moves from f(x) to g(x) along

this short geodesics homogeneously and reaches its end at t = 1. O.K.

Corollary. Homotopy class (C*) for ¢ maps M — N are the same as C°
homotopy classes.

Transversality. Let W™ % C N™ be a C*-submanifold. A map f: M" —
N™ is called “transversal along W” iff for every x € f~Y(W) map of
tangent spaces

. n df m ™ m m—k ~ k
(modf): T} \/w N/Tw " = nom}% blane
has rank &.
Examples.

IL.n<k = f1(Q)=0empty.
2. n=k:
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(a) f*(W) are isolated points z1, ..., x;, (df),, has rank k.
(b) Special case: m =k, dim W = 0 (point).

a) N2 wi b) m=k=n
f(M
( ]) o000 ... 0 °
X1 X2 X| W
k=1, m=1, n=2 1, =1y =R*=R"

Theorem (without proof).

1. Every map can be approximated by a map transversal along W C N
(approximation is “local”).

2. For every map f submanifold W C N can be approximated (“locally”)
by W € N such that f is transversal along W.

“Locality” = “remains unchanged in the almost entire area where it al-
ready was transversal”.

Theorem 1. Let map f : M™ — N™ D W™ * be transversal along W € N.
Then f~'(W) is a C*°-submanifold in M of codimension (and map df |
is isomorphic).

normal

W
f(M]) Proof. Let y!,...,y™ belocal coordinates in
_ N™ and W™=F is given locally by equations:
m=2 Wiyt=...=yF=0.
2

N
For the transversal map f: M — N along W C N we have functions
v (f@) =yt Py =0 (),
and the inverse image f~!(W) is given by equations:

yl(f(fUH)):O, y’“(f(ﬂﬂ))zo
2H(x) 2F(z) —Vrrkc M
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These equations are NONDEGENERATE because of TRANSVER-
SALITY long W (i.e. at the points f(x) N W).
So we have nondegenerate submanifold

Vit oM
and map
ank N ank
is isomorphic along normal k-planes by definition of TRANSVERSAL-
ITY.

Examples. Function R” LRoW = point. Level f(x) =y is transversal
iff df # 0 for all f'(y). Topological invariants.

L. Let n=1. L\/ \/ ’/T\uﬁ\/AJ
A

N,-N_=1

(a) local = numbers NV, and N_ of “positive” and “negative” points.
(b) global = N, — N_.

2. Degree of map. f: M"™ — N™ — closed (oriented).
f(point) = N, UN_,

e degree (mod?2)is Ny — N_ (mod2).
e degree (over Z) is Ny — N_ (both M™, N™ are oriented).

3. Intersection index.
n f n+p P
f(M?) M Ly NP S PP,

(M", f)o WP € Z

if oriented, otherwise modulo 2.
n=p=1 n+p=2
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IMPORTANT 1ST CASE: “Empty set transversality”

f:M" = N">W™k n<k f(Q) =0 (transversal map).

Homework 8.

1. Prove that the expression Y. p;dz’ (locally in T,.(N*)) defines correctly
1-form in T,(N*) .

2. Prove that geodesic flow (Hamiltonian H(z,p) = ¢ (x)pip;/2) pre-
serves the form Y, p;dz’ at the level H = const in the manifold T,(M™).

3. Prove that every closed k-form €2 in M" is homologous to the form
Q' — Q = dw, such that " = 0 in the disc near the point z :

o

AT
RIS
o0,

4. Prove that the Euler - Lagrange equation in T,(N*) for the functional

S{v} = / Zpidxi—Hdt :
7

v = {x(t), p(t)} , H = H(x,p), isexactly a hamiltonian system

. 0H i OH
i = T o5 0 = o=
b oxt op;
5.  Prove that the flow ' = & (z) preserves the volume form

Q =dat A Nda™ if

i:_agg) =0 (& S0=09)

=1

117



Homework 6 and Homework 7. Solutions.
Homework 6. Solutions.
1. Geodesics for S™, R, H". Metric
a) dI* = dp® + sin®p (dQ)* , S,
where (d€2)? is the metric of S*71 |
b) di* = dr® + r?(dQ)?® , R",
¢) di? = dx* + shp (dQ)? , H" .

Straight lines through zero 7y € S"! is geodesics (equation does not
depend on angles on S"71).

Other geodesics will be found by the action of groups SO, (for S"),
SO, * R" (for R"), and SO, (for H").

2. Closed geodesic in T?: straight lines with rational parameters

0,1 (1,1)
5 . m
y Pig Yy = — x + const
/:, n
00 x (10
RP2
! 3
3. Closed geodesic in RP? (all nongomotopic to zero)
-
-n
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4. Parallel transport along the path ~(¢), =z!(¢), ..., z"(t), connection

\/\ 0

n(t) v(t)

G00.C0) = 4 (anOC) -

= (Vagiy n' @) @) + (955 Van'(t) (1) + (9 ' (1) Vo’ (t)) = 0

(Leibnitz Identity).

Homework 7. Solutions.

1.
T T
So(7) S1(7)

A = A;(x)dz" is one-form in M™ .

d (0L, 0L,
0L, d (0L, 0A; . 0L, 0A; ..
- = Ai(2) — - ) = " - = —2 3/
ozt ’ T dt \ ot oxk T Oat oxt
0A; . 0A; ..
ELy = ELgy + Z 9k it - a—xjmj =
k J
0A; 0A ) .
(dA = B)
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dg
—N
fv k(s)ds = 2mn ?
~ - closed

¢ - rotation of normal (and tangent)

V) vector.
_ di(s)
O o =7

s - natural parameter.

Another form:

v & S': Gauss Map : G*(dyp) = k(s)ds

(check!)

3. Area form
R?: deAdy = rdrAde , 1= \/det gi;

1 0
di> = dr* + r?dy* 9ij = (0 7,2) , Vg =T

4dz Ndz

SQ . m = Sln9d9/\dg0
4dzdz 1 0
2 _ _ 2 .2 2 o
dli* = EEDE df” + sin“0dy” |, g (O SmQH)
ddz Ndz
H2 : m = SthX/\ng
ddzdz 10
2 _ _*0z4z 2 2 2 o
i = TESERE dx® + sh®xdy® , gy (O Shzx)
xdy — ydx Y
dey = const - W , @ = arctg -
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k=2
<

5. Complex Line bundle C! over M™ | (z!,... 2"):

MY = U, U, zhoo an

Let Uy, = U, Usg =V ,wehavein UNV for the bases ey(z), ey(x):
ev() = g"V(@)ev(z) , ¢"V(x) =

- U, - connection, group G = U(1). We have for the connection AY(z)dx
in UNV: . .
AV = (V)TN AV TV = (V) dg

where
(gUV)—l AVgUV — 4V 7 (gUV)—l dg = idp(x)

Finally, we have for AY_,:
Al[{eal = Ageal - d(p(%)
Conclusion:
dAFU{eal = AKeal = H
(same for all U®).

Obviously dH = 0.

Remark 1.
a) H € H?*(M", R) is the first Chern class of a line bundle.

b) It does NOT depend on the choice of connection.

Proof. Let us have AV = AV + 40V AV = AV 4+ ;UV . We have then
in UNV: WY = ¥V = ¥. So we get, that ¥ is a globally defined 1-form
in M™ and

H = H + dv

where dV¥ is an exact form in M™.
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1
__/' H
27 2—cycle

is integer (€ Z).

Lecture 26. Transversality. Imbeddings and
Immersions of Manifolds in Euclidean Spaces.

Transversality.
f:M"— N™>Wm*
(along W)
T Yre T Tt = R

rk(rodf) =k forall e f~HW).

Example. n <k = f~Y(W)=0.
Applications (imbeddings and immersions).

Theorem 1. Every map f : M™ — RY can be approximated by NONDE-
GENERATE imbedding if N > 2n+ 1 (M™ is compact C*° manifold).

Proof.

Step 1. Consider any C'*°-map M" 2 RN and O™ imbedding M™ ¥ R,

Their product ¢ x ¢ : M™ — RN*@ = R” gives us C*° imbedding ® :
M" C RN*¥Q =RP N 4+Q > 2n + 1.

Step 2. Project the imbedding M™ € R¥ into the space RY~! along the
vector (direction) [ (unit vector £/ in SNT@-1).

. @

////

Consider the projection m 0 ® : M™ — R,
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Lemma 1. For all vectors £/ outside of the image R : M™ x M™\A — SP-1

R(z,y) = é — ; €SP, 4l ¢ R(M™ x M™A).

the projection map m; o @ is imbedding.

Proof. m(x) =m(y) = £l e T(M x M).

Lemma 2.
! Consider the map Ty(M") % SP-1 where
X (x,7) € Ty (M™), |7| = 1, 7 is tangent to M™ at z.

Ri(z,7) =T.

Let +1 ¢ Im R,. Then the projection m 0 ® : M"™ — RP~! is an nonde-
generate immersion.

Proof. No one tangent vector to M™ € RY belongs to the kernel of the
projection if [ not parallel to 7 for all (x, 7).
Lemma is true. O.K.

Proof of the Theorem 1. Let ® be any imbedding M™ C RY where
N > 2n + 1. We project it along the direction I, £ ¢ Image(M x M\A).
Almost all vectors have this property because dim Image(M x M\A) = 2n,
less then dim S¥ ' c RN, N —1 > 2n.

Here Transversality works. We apply transversality to the pair
M x M\A — S¥~! > (point).
Out Theorem follows (nondegeneracy see below).

Theorem 2. Every map M"™ — R can be approximated by immersion, if
N > 2n.

Proof is similar. Image of the map T*(M) — SN~ (z,7) — 7, 7 € R™,
|7| = 1 does not touch “typical” point (&) € SV~ because dim T*(M) is
equal to 2n —1 < N — 1, if N > 2n.
So for N > 2n we can project imbeddings along m; and image in RY~!
remains an immersion M™ — RV~1,
So for N — 1 > 2n we can project preserving immersion.
Theorem follows.
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Example.

e N = 2n. Projection to R¥~! may be singular (not immersion).

. N—1 n=1
. N = 2n + 1. Projection to R may
be not imbedding. N=2
Singularities of projection:
R3

I R1—>R1(proj ection from R? ) @
R2 | ! | |
u knot diagrams

b i
Rl

Remark 1. Our results are true for all manifolds (C'*):

a) M™ — NV, N > 2n, imbeddings are dense.

b) M™ — NV N > 2n, immersions are dense.

Remark 2. Our results are true for noncompact manifolds.

Lecture 27. Intersection Index and Degree
of Map.

Intersection Index:

f:M"— N™> W™k  f transversal along W, k = n.

Intersection f(M™) N W™ * is “transversal” in the point z € M if linear
spaces (df), - R} € R, and R’Jfg)k (tangent to W) jointly generate R™
(tangent to N™ in f(x)).
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W e Ty - oriented frame to N.
e 7, - oriented frame to M.

Y

e Ty - oriented frame to W.

“Sign” of intersection point x; = sign [7n /Ty 7]
T

1. Intersection number:

MoW in N = > (=1
;e f~1(W)

2. Nonoriented Case: intersection number is from Z,.

Degree of map.
f:M"— N" D> W = (point), k=n=m.
f-transversal along W:
W)=z, U...Ux, € M,

M™ — oriented (closed). Degree of f [deg f] is equal to

degf= >, (-1
z;€f (W)
sign(z;) : 7n /Ty = signdet <df|x_> ,
J
df‘% : IR?amgent to M - IR?amgent to N*
N
mear map

deg f is a particular case of intersection number for the case dimW =0
(W=point). If M and/or N are nonoriented,
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Theorem 1. Degree of map and Intersection Index are the same for homo-
topic maps.

Proof. Consider homotopy F' such that
F:MxI—-N>DW, F|_ =f F|_ =g FeC>

and F is transversal along W.
Consider F~1TV. We have picture with 4 possibilities:

? U 2) -
1) W

sign(z;) = — sign(zs).

no point for ¢t =0, 1.

sign remains unchanged.

f\
2. U sign(z,) = — sign(z,).
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Conclusion. Total sum remains unchanged.

0.K.
Corollary (N = S™): degree of map does not depend on the point W C N™.
Proof. Let N = S™. Rotate sphere S™ ¢;, such that ¢g = 1, ¢1 (W) = W,

/\‘NZ Consider homotopy process
¢iof =F(x,t), F|_ (z)=Wi, F|_ (z)=W.
Wy
0.K.
Examples.

1. Jordan Theorem.

A

1 v St c R? (C*-imbeddings). Two paths 71,
2

~o connecting a pair of points A, B.

Y, (71 U7e) 0 ST =0 (Homework 9).
| Y2 IfyoSl=1 = yoS! ==l

Conclusion. If 7; 0 S! = 1, then every path 7 connecting A and B
crosses S

Remark. Intersection of 2 closed submanifolds M™ o Wk € R™, m =
n + k is equal to 0.

2. Gauss Theorem: Let w = f,(2) be a polynomial in R? = C. Tt defines
amap f:S5%— 5% deg f =n, plus every point f~!(w) is positive. So

we have exactly n points in f~!(w) : 2!,..., 2" in transversal case.
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3. F': M™ — N™ — map of closed oriented manifolds, m = n = k, W-

point.
Theorem.
[ 1@ =ess) [ (Why?)
———
M integer N

Application in Geometry will be presented.

Lecture 28. Intersection Index and Degree
of Map.

Intersection index and degree of map are homotopy invariant.

Theorem. Let M™, N™ be oriented (closed) manifolds and f : M™ — N"
be a C"*°-map. Then for every n-form €2 in N we have

/f — (deg ) [ 0

1nteger N

Proof. By transversality theorem, almost all points W € N are “transver-
sal” along W € N. The set of transversal points in N is open and has mea-
sure=1. So the integral [ depends only on the set of transversal points in

w e N. Let U > w be aNsmall open set containing w such that all points in
U are transversal. Let U be connected set.

We have f~1(U) = U; U...U U, where U, 5 Uisa diffeomorphism
preserving (+) or reversing (—) orientation with sign = (—=1)%, j =1,...,L.

We have
/f*Q: (—1)31'/9,
U; U

and



We have

deg f = Z(—l)sj, (deg f calculated at the point w € U),
J

by definition.

We know that deg f does not depend on w: it is same for all transversal
points w € N, and their measure is 1.

So we calculated

[r@=wesn- [a

Theorem is proved.

Corollaries.

1. This Theorem is true also for manifolds with boundary

f:(M,0M) — (N,ON) L

assuming that f(OM) C ON.
oM oN
In this case deg fy; = deg fans (Why?) (Homework 10).

2. Degree of map f : M — N is well-defined for “proper” maps f such
that f~!(compact) is compact.

If © is such that [ < oo, we have

[r@ =) [o

N

(See examples of polynomial mappings)

f:Pn(x):(R)%QR), y=apx" + ...+ ay.

(See Homework 10)

What is “Linking number” for 2 submanifolds {M™ Wk} in R7Hr+1?
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a) {Mn’ Wk} = M"o Bk+17 8Bk+1 — Wk in Rn+k+1‘
b) {M", Wk} = Zm o Wk, 92 = M™ in RrH+,
¢) {M" Wk} = Zntl o Bl in RTH2,

Z B

M
+
M W M W
(here n—k=0)

Intersection Number (in manifolds).

1.

M" o W" = (=1)" W¥o M™ (oriented case).
2. Self-intersection (M™ = W").
M" oM™ =7 in N?",

Perturb M = (M).

M .
MoM=MoM.

M
Corollary. M"o M" =0=—-M"o M"™, n =2k + 1.

Modulo 2 (nonorientable case).

Example.

RP2 £

Mo M =1.
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Fixpoint (Lefschetz) problem:
f:M"— M" (orientable).

Solutions: f(z) = x.

Algebraic number of solutions: Let A C M x M, (x,z) € A. “Lefschetz
Number” (z, f(z)) € Ay.

Homework 9.

1. Prove that for all open 2-manifolds we have H?*(M?* R) = 0 .
2. Prove that degree of map f: S' — S!' can be calculated by

fle+2r) = f(x) + 2nom , meZ, m=degf
(27 - circles).

3. Prove that intersection index of 2 closed curves in any domain U C R?
is equal to 0.

4. Prove that every map M" — S™\W™* is homotopic to zero for n <
kE—1.

5. Prove that every map S™ — S™ is homotopic to zero for n < m .
6. Calculate cohomology ring H*(SO4,R) =7
7. Calculate H'(M?* R) =7 for M? = R?\(%; Ux*y) :
o o
*1 *2

Lecture 29. Intersection Index and Degree
of Map.

Intersection Index, Degree of Map.

For M"™ o W* c R"* we have Intersection Index.
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For f:M"™ — N" we have deg f.
They have the following properties:

1. They are homotopy invariant.

2. M" oWk = (=1)k Wko M™.

3. MoM =0 for n=k=2[+1 (oriented case, M o M € Z).
4. In nonoriented case M"™ o M™ may be # 0.

5. Linking number {M™, W*} in R7Tr+1

M=0Z, W=0B, MW =0, {M"W*}=MoB=_ZoW.

Let M, W € RvHi+1 = gR7F+2
z B

! { ) } We have Bo Z = {M,W}.

M W M W

Gauss formula:

Let M =St e R3, W = St € R3.

M
dy! dv? d?
W det| dzt da? da?
O - JUDNC S

Y(®) x(9) 1 (dy(t) x df(slgﬁ(t) — (s))
M = @), W = a(s), Eﬂ]fv]f |
V(1) # x(s),

z :T{Qvg)ﬁé’(i)%:i\ A Is it closed 2-form in R3 x R3\A?

Fixed Point Problem.

f:M"—=M" flx)=xz (7)
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Algebraic (Lefschetz) number of fixpoints:
L(f)y=AoA; in M"xM", (z,z) €A, (z,f(x)) € Ay,
A=A; = f(z)==2.

1. Special case f ~0: M™ — const.

Aods=1. \

Example. M" = S" ¢ :S™ — D" (south hemisphere).
Map: 5" % Dr L, pn 2, gn

Sn Dr—] g:¢ofo¢N0(0bViOUS)-

S1
Conclusion: Ao Ay =1. There exists fix point (at least one).

2. Special case f ~ 1: M — M (identical). We have

0, n=2k+1,

AOAf:AOA:{xMW%n:Qh

Example: “Euler Characteristics” y(M™).

Sy(X): M"™ — M", X — vector field,

Sy(X) ~1, M"CT*(M") M
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M =(M"tX)
= £ o)

/ST

x(M™) = Mo M =?

Consider “gradient” vector (covector) field df for f: M — R.
T.(M)=T*(M), weuse T.(M).

Mo M =?

= 0. Critical point z; is nondegenerate iff the

2
d'f z( 7 ) da'da?

Critical point: (df) |

. Tk
quadratic form

0xIQxI
is non-degenerate.

“Sing” of x is equal to the number of negative squares in the form
(d?f)z,, which is the “Morse index” n(zy).

Signf Tp = (_1)Morse Index(zr) _ (_1)771(9%)'

Lemma. Intersection Index M o M in T, (M) is equal to:

Mo M = Z(—l)jmj(f) = x(M") for orientable manifolds,
j=0

m;(f) = tpoints x;, with Morse Index = j.

Example, n = 2. x(M?) = mo(f) — mi(f) + ma(f), mo — minima, m; -
saddles, my — maxima.

Proof of Lemma. Variation of manifold M given by vector field X is
Sx(t): x — x+tX(z) + O(t?) where t \, 0. For the fix point X (z) = 0 we
have:

Sx(t) : & = T+tAZ+O(t*), where 2 = (0,...,0) and A = (4]) = (%) '
T

Now calculate intersection index M o M in T,(M™) = T*(M™).
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k .
Local coordinates in T*(M) are (x!,... 2% nt ... n¥), 7 — tangent vector.
fa T _ 0 _ 0 /0 r _ 0
Basis is: 7 = 377, s Tn = g T gt Tn = e

Tangent space to M C T*(M) is span(ry,...,7,) at the point z; (fixpoint
for X).

Tangent space to M = Sx (t)M for t \, 0 is span(r + tA7], ..., 7, + tA7!)
(neglecting term O(t?)).

A+ tAT, . T+ tAT T, ..., T) — basis Mo M.
1 n

sing is equal to signdet A.
0.K.

Let g;; X7 = df and g;;(z)) = d;;. We have

X’ 02 ‘
sign det A|mk = sign det ( ) = sign ( / ) = (—1)* negative squares
Tk T

oxd 0xt0xI
Lemma is proved.

So Euler Characteristics is:

1. Total algebraic singularity of vector field.
2.

n

X(M") = Z(—l)jmj(f), for f: M — R.

J=0

m;(f) = tpoints z;, with Morse Index = j.

Example. Maxwell (XIX century).

M Floating island, no beaches.

mgy — mq +my = 1.

/" under
water
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Lecture 30. Two applications of differential
forms: Degree of Map and Hopf Invariant.

Two applications of differential forms.

I) Homotopy theory: Degree of map S” ERF (spheres may be replaced

by any closed orientable manifolds:)

A) Take n-form Q € A"(S™), [Q=1.
Sn

Definition.

deg f= [ f1(Q)
/

Proof.

Let F' be a homotopy from ftog: F': S"xI — S™, (0 <t <1), F(z,0) =
f, F(z,1) = g. Consider F*(Q2)). We have dF*(2) = F*(dQ) = 0.

/F*(Q)— / FH(Q) = / dF*(Q) = 0,
(s7,1) sho) 1 (smxn

g°Q Q

Q= Q+dow = /Q+dw:/Q.

(S, t) (S, t)
Theorem is proved.

We calculated integral [ f*Q geometrically and proved geometrically
gn
that [ f*Q = Qf Q> -deg f.
Sn n
Consider S? — S? and fix 2-form Q in A*(S?) such that [ Q = 1.
>
Let f*Q = dw, w € AY(S?). )
Define “Hopf Invariant”

H(f) :/w/\f*Q.

SS
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Theorem. H(f) is homotopy invariant.
Proof. Consider F': S? x I — 5%, [ Q = 1. Take F*(Q) € A*(S? x I).
Take *
FYQ) =dw, weN(S*xI), J=w|_, " =w|_,.
We have

d(w A FH(Q)) = dw A FH(Q) = F(Q) A F*(Q) = F*(QAQ) = 0.

So
/w A FH(Q) /w A FH(Q) = / (F*Q)? = 0.
t=1 t=0 S3xTI
/w"/\g*Q /w//\f*Q
58 S8
Here

F|t=1:9’ F|t:0:f'

How to calculate H(f) geometrically?

Let Q@ — Q' = Q+ dv: H(t) is the same.
Let w— w' =w+u, du=0: H(t) is the same.

Theorem is proved.

IT) Riemannian Geometry: Gaussian Curvature.
Let M™ C R"™ (2% 2 ... 2") and M™ is locally (near P € M™) defined
by equation:

20 =z(al,...,2"), P=(0,0,...,0), (dz)|,=0.

Consider map (Gauss).

QS nQ) es" cR™, Qe M
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Definition do — volume element at S™.
K* = G*do.

n-form K* is the “Gauss form” or “Curvature Form”. Let dojs is a volume
element of M" induces from M™ C R"™ Riemannian Metric. We have by

definition
K* = Kdoyy,.

In our system of coordinates z = 2° = z(z!,...,2"), 2 L M" (at P), we have
9i;(P) = g;;(0) = ¢;; and (0g,;/0x%) = 0. So we have

(doy)p =dx* A...ANdx", K* = Kdz"' A... Nda",

and K is ordinary Gauss Curvature:

0%z

Kp = det (m

) , P=(0,0,...,0).
P

Theorem 1. K* = Kdoy = G*(do), where do is invariant volume element
in 5" C R**,

Proof. Let us describe volume element doy in S™. Let S™ be given by
equations (N=*“north pole”)

w+ud 4. 4wl =1,
w=+/1—(u")?2—... —(u")?
N =(0,0,...,0),

ul, ..., u" — local coordinates.

Construct Gauss map:

G:Q—nges", Q=(z'...,2")
M —z(xt, o2 + 2% =0,

ng — normal vector.

(1, =241, ooy —2n)
nQ - 2 2
VIt (200)2+ .o+ (20)

We see that P — N, where P : ¥ = 0.
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The volume element of sphere at N is:

do =du' A...ANdu", u— local coordinates in S, 1’ = w.

Map:
u=n __(L=Ve)
¢ 1+ (V.)2
) — J
S S L T

1+ (V.)? V14 (V)2

Calculate Jacobian:

ou?
Jo = det (@)'T, (2 =0,0,...,0]

Jo =7. Remember that (VZ)p = 0. So we have:

ou 02z
= — = (—=1)"- ——
Jo = det (8:?) (0,...,0) ()7 - det (85[18372)

So we have

0,...,0)

Kdoy = G*(do) = (—1)" - det 0
M N oxrtoxt

For n = 2k we have (—1)" = 1.
Let n = 2. By definition

0%z
K= det (Gxiaac“)

Conclusion:

, where z =2"= z(z,y), VZ|T:O.
T

Theorem is proved.

/Kda = (degG)-//da.
M2 52

How to calculate degG? Let n = 1,2. For n = 2 we expressed Gauss
Curvature through the Curvature Tensor (Riemannian).
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How to calculate deg G in R?® (the same consideration can be done for
any compact M™ C R"1).

M?CR3 G:M?— 5% h:M?*—R.

AZ

N
Lemma 1. Let SN € S? (the
South and the North poles) be
transversal points for G. Then
Vh=01iff P, € G}(N)or Pj €

G(3).
S
Lemma 2. For the function z on M™ we have':
Signpj — (_1>Morse Index in G~1(NV)
SignS, — (_1)n+Morse Index in G~1(N)

Calculation:

ny __ 1) . — \n _ 7 ’
= Z;( 1)'m;(2) = degy G+(=1)" degg & { 2deg G, n = 2k.

]:

Lecture 31. Comparison of notations of our
Lectures with book of Do Carmo “Rieman-
nian GGeometry”.

We recommend book Do Carmo (D.C.) “Riemannian Geometry”. Let us
make some comparison of notations and prove some theorems (f.i. “local
minimality” of geodesics).

Manifolds:

Morse Index of z(Z) at P, (Vz)p = 0 in equal to the £ of negative squares in the form
(d*)p.
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D.C. “Differential Structure”, Hausdorff.

Our Course: “Atlas of Charts”, C'° manifolds, metric spaces, “Dou-
ble good Atlas”.

Local coordinates - same.

Imbedding and Immersions M"™ = RM (proof of existence is missing in
D.C.).

Partition of unity (proof is missing in D.C.) - we proved for compact
manifolds.

Tangent vectors, basis of T" as 9; = 0/dz" in local coordinates
(', . 2").

Vector field X = > a’(z)d; (locally).

Our notation X = (a') (index is “upper”). Action of vector field on
functions f(x):

, 0 .0
D.C.: X(f) = Zal(x)a;:i = az@a];

Commutator

(X, Y] = X (Y() — Y (X(1))
; ob b 6a1>

D Oz

X=(@), Y=0), X,Y] = (

C*>®-maps : M" ER N™ differential of map, rank :
dfr : T; — Ty, (linear)

Implicit function theorem / local inversion theorem of the map (no proof
in D.C. and in our course).

Approximation and Transversality are missing in D.C. or presented in the
highly reduced form - see C.P.

Examples of manifolds - similar.

Orientation.

Covectors (basis (dz") in local coordinates) are missing in D.C. Covector
fields w = >, u;(x) da* (1-forms).

Manifolds T*(M™) (vectors), Atlas, Charts.

Manifolds T, (M™) (covectors, missing in D.C.)
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Riemannian and Pseudoriemannian Metric = inner product (symmetric,
nondegenerate) is (X, Y), g; = (0;, 0;) .

Symplectic inner products and differential forms are missing in
D.C.

Volume element d"o = \/detg;; dz' A--- Adz™ (locally).

Induced Metric for submanifolds M™ C RY or M™ C N* (good only
for positive Riemannian Metrics).

Lie Groups, right and left invariant vector fields, right and left invariant
Riemannian Metric on Compact Lie Groups, bi-invariant metric and inner
product of right-invariant vector fields (D.C.).

Riemannian Metric and length of curves. Existence of Riemannian metric
in every manifold (proved by partition of unity in D.C.; another proof -
imbedding in RY). Volume provided by Riemannian metric.

Existence of biinvariant volume on a compact group G. Existence of
invariant metric in the spaces with action of compact group G (“averaging
procedure” - both in D.C. and our course).

Connections (“affine”) - considered in D.C. for tangent bundles only:
vector field X, X = a'(z)0;,

VY = > VY | Y = V(2)9

(2

V.Y = ¥ (V,0;) + W 5 - ((%]

Ozi ox’
for components, V;(9;) = T}, 0 .
Symmetric Connection” Ffj = Ffi {V.0;, = V,0,}.

Curve

+ bjrfj) 0;

c(t) = {2/(0)} , X = ()

Let V be a vector fields, V = (v7), X(t) - tangent to c.

d dv? o
—(V) = va = (% + vqul“flk) 8k

D.C.: X; & 0;, Vx,X; = T} , X = (i/(t)) along c(t) .

Tensors. Examples:
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Scalars (type (0,0)) - f(x) .

Vectors (type (1,0)) - (u') > u'0; .
Covectors (type (0,1)) - (v;) > v dz’ .
Inner products of vectors g;; (type (0,2)) .
Inner products of covectors ¢“ (type (2,0)) .

Operators (a?) (type (1,1)) .

AN e

General Tensors (type (k,1)) .

Components  T/* % (1)

Ji---Jl
ey, ..., e, - basis of tangent vectors
el, ..., e" - basis of covectors
ey ey, @ ... Qe ®e ®e?®...® e - basis in tensor space
(k,1).

Operations : Linear, Tensor product

(k) ® (p,q) € (k+p,l+aq)

15! 13! e
j—vj} ® ,Ij]}/ == 7?/;// (.T)

Permutation of indices (lower or upper)
Trace
n
Y] Trace I Y]
7‘;/‘7’2‘7’2,/ — 1?/;// - E 7-";/;;//
i=1
. — (i i i g N -
Examples: A = (a}), a5 — a; = TrA (trace), g;; — g; - permuta
tion.

Extension of connection to all tensor fields. Axioms.
a) Trivial for scalar fields V; f = 0; f .
b) Satisfies to Leibnitz formula for tensor products.
¢) Annihilates Riemannian metric V; gy = 0 .
d) Commutes with trace

Vx (V, W) = ui%a/,m = (VxV, W) + (V, VxW)
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where X = (u)
ViV, W) = Vi (gv'w’) = (VpV, W) + (V, Vi, W)

Vk = VXk? Xk = ak
For parallel Transform

d dV dW
av aw av,w)
A e

Levi - Civita Theorem. Symmetric connection compatible with metric
gi; is given by the formula

L (0g:  Ogw  Og;
F?kzﬁgm(g]—i- ik _ gﬂﬂ)

oxk oxJ ox?

“symmetric”: Vk éy = Vj 8k — VXY — VyX = [X, Y] .

Homework 10.

1. Prove that for complex polynomial

we have deg f = n .
2. Calculate degree of rational map

Po(z2)
Qr(z)

(irreducible fraction)

3. Calculate degree of real polynomial

y = a2 +az" '+ ... +a, : R—=>R, a; € R

4. Let v(t) = y(t+2m) : S' - R* and 4 # 0 .
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f(x)

Consider “Gauss Map” :

f . L.
st S St f() = A/ es!

Prove that f*(dy) = k(s)ds , where s - natural parameter, k - curva-
ture. Calculate deg f =7

5. Consider 2-form in R3\0 :

Q = xdyNdz — yde ANdz + zdx ANdy

Prove that

Q
d<<x2+y2+22>3/2) -

area element in S?

Prove that

|unit sphere

which is SOj3 - invariant.

Homeworks 8, 9. Solutions.

Homework 8. Solutions.
1. Prove that Y, p;da’ is 1-form in T.(N¥) (local coordinates (z', p;)).

Change of coordinates = = z(y),

oz’ ,
(system x)  p; 9y = p; (system y)

So we have
S ovidy = > i 9 W = > pidat
J 4,J i

Remark. Y dp; Adz' is a well-defined 2-form also (done before).
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2. Prove that geodesic flow with Hamiltonian H(z,p) = g¢“(z)pip; /2
preserves the form . p;da’ [correction due to student: it preserves the
form Y. p; da’ restricted to the (2n—1) - dimensional submanifold T3(M™),
|| = 1 (unit tangent vectors)].

Proof. Calculation shows that for the shift S; along the flow we have for

geodesic flow
d )

For geodesic flow have

= dH

t=0

1 L
— gw<l‘) i’z fi‘]

H(z,p) = 5

9" () pi p

DN | —

so T1(M™) is given by the condition H = 1 and dH = 0 on T}(M").

Calculation: We have

Si(p) = pi + tp + OF) , S;(2") = o' + ti' + O@F?)
For i' = H,, , p* = — H, we have then
d d
— S;(pi = —H, , —5; = H,
dt (p) —o dt t( ) —o Pi
d ., ;
as (diL‘) = dei = sz'pj dpj + Hpirj dx
t=0
Finally:
—S* (Z Di dx) = —Huadx' + p; [Hpip]. dp; + Hp,ui dxj] =
t=0

Ip;

where L is a “Lagrangian”.
For
1 i
gij(x) ' &

1 ..
H(z,p) = 5 g”(x)pip; 5

2
we have H = L and also dH = dL.
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2 is proved.

3. Locally every closed form is exact: w = dv in the domain U C M™.
Let U is the ball |z|> < e. Multiply v by function ¢ (C®, ¢ = 1 in U
and ¢ = 0 outside of the ball |z|*> > 2¢).

Our form is w — d(pv) .

4. Let
S = /(Z pi(t)@'(t) dt — H(p,w)dt> :

v = {z(t),p(t)} , L = Y pii" — H(x,p) . We have from the Euler
Lagrange equations

oo (am) oL OH

at\or) — o o

. OH AL d (8L) 0

a:—api :apiza op;

Remark. We can write

S{y} = /(d—1<9> ~ Hdi)

v
where () is the simplectic form.

In our case
Q = Y dpndd = d(Z pz-dmi>

If cohomology class [Q] € H?*(M?") is nonzero (Dirac Monopole, Com-
pact simplectic Manifolds) the expression S{vy} defines correctly a “Mul-
tivaled Functional” or closed 1-form on the space of paths ~ (fi. closed
paths).

5. Consider volume element dz'A---Adz" = Q and the flow ' = &'(x).

We have p
— (55Q
dt( i)

t=0

. : 1 1 1 n n 1 n .
- golgw(x + YA Ad(a + ) — dat A Ada] =

_ 351 agn 1 n __ Sy
= (@4-...4— 8x”) de A---Ndx" = divé(z) - Q
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Homework 9. Solutions.

1. Let M? = R?\(point). It is homotopy equivalent to S', so H?(M?) =
H2(SY) = 0.
Every open 2-manifold is homotopy equivalent to “graph” like

For every 2-form in D? we have w = dv (in D?).
Construct function ¢ = 1 in D? and ¢ = 0 outside of domain B? D
D?*. So w~ w —d(pr) = w'. And W’ is nonzero only in strips

strip

Every such strip is homotopy equivalent to circle. Our result follows.
2. Degree of map S! — S', m = deg f ?
flz+2m) = f(z) + 2om , meZ

Proof.

4my----- ,
. Inverse

ar \ image

2114 ' -
' of point (a)

al ' appearstwice

0 21

2 is proved.

3. Deform one circle far: Si(t), 0 <t <1, S5(0) = Sy . We have
Sl ®) 52(0) = Sl o} Sg(l) = @
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sho) —>le Q

S0 F)

4. Every map M" — S"** is homotopic to zero for k > 0 because it is
homotopic to C'* (approximation), and image of C'*°-map does not cover
Stk = S§™ . Homotopy process

MY x T & gm

can be approximated by smooth (C°°) map F transversal along W™ %,
Here m = n+ k. For n < k—1 we have

F(M"xI)nW"* = 0
So our statement follows.

5. Same argument for f: S" — S™ , n < m: C% - map can not cover
S™ it m > n.

6. H*(SO;,R) =7 We have SO, = $* x S$3/ £ (1,1). Group G =
SO, xSO, . G -invariant torusin SO, appear (as well as for S*xS?) only
in dimensions 0, 3, 6 . So we have for H*(SO4,R) in different dimensions:

1 , w1 R Wo y w1 A\ wa
H*(SO4,R)

H =R, H}3 =R®R, H = R.
7. We have

R2\(*1 U *2) =
D2

Use arguments same as in Problem 3 above for calculation of H?

H' (R*\(x1Ux*y)) = R®R
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Lecture 32. Geodesics. Gauss Lemma.

1. Geodesics: smooth curves v(t) = {z'(t)} such that

D d¥ .
Equation . A .
i 4+ Tyt =0

Calculus of variation:
a) Length

b b
I(y) = / @(t)] dt = / Lo(, @) dt

where
Lo(l’, ZC) = glj(.f) .Tz jfj
is a “Lagrangian”.

b) “Action”

b b
Sty) = / %gij(x)ﬂtia'cj it — / Lz, &) dt

Euler - Lagrange equation (EL)

d oL 0L
dt it Ox
Momentum:
0L
Pi= i
Energy:

Conservation of energy:

dE
— =0
dt
For L = L; we have
1 i .
EF = L = §gz‘j(l’)l’ ¥ = §||:E||2
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The condition E = const means that the parameter ¢ along geodesics

is NATURAL (~ length).

For L = Ly with natural parameter and L; Euler - Lagrange equa-
tions coincide.

Exponential Map:
V - domain in Tp(M™) = R", P = M".

\'
: o
expp : Vo> M", veTp, expp(V): /_.

P geodesics

exp F)(v)

“Geodesic ball”: B.(0) - ball in Tp,

expp (B:(0)) — geodesic ball in M"
It exists for €, - small enough (depends on P € M™).
For compact M™ it exists for any radius.

For symmetric connection we have V;0; = V;0; (or Vx, X; = Vyx, X;
for X; = 0;). Let s(u,v) be a parametrized surface

s = {z'(u,v), ..., 2"(u,v)}
Lemma 1.
Dos _ Dos
v du  Ou v
where 5 oy 5 .
s 't s T
- owm TN T Y

or VxY = Vy X ats.

Proof. Vector fields X, Y commute at the surface s, so [X,Y] = 0 at s.
But we have
VxY — Vy X — [X,Y] =0

at s.
Lemma is proved.
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Gauss Lemma. Let expp (v) be defined for v € Ty = R", and w € Tp.
Then we have

((dexpp), (v), (dexpp), (w)) = (v, w)

Proof. For v | w lemma is obvious because ~y(t) = expp(tv) is
geodesics for 0 <t < 1.
Let now w L v,so (v,w) = 0. Put

w = % K v(0) = v, |v(s)] = const V
o v(s)

For small € > 0 all u = twv(s), |s| < €, have well-defined expp (u),
0<t< 1.
Consider surface f: A — M"™, parametrized by (t,s):

A f(t,s) = expp (tv(s)) , 0<t <1, |s| <e

where f(t,s0) - geodesics through P.
By definition

CLOL = (despr), (), (despp), ()

t=1,s=0

We have also

8<8f 8f> B <D(?f 8f> <8f D(‘?f> B <D@f 8f>
ot ‘os’ ot’  ‘dt 0s’ Ot ds ' dt ot"  ‘dt 9s’ Ot
DO5 Of 10 of op
ds ot ot 209s ‘ot o’ 7
of of, . .
so (== P 6t> is t — independent.
Calculate it for t — 0 :
We have
of

S0) = (@dexpp), (o)
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and

af
af of, _ of of _
So <88,8t>_0f0ra11t, and <8$’3t> = 0

t=1,s=0
Lemma is proved.
Theorem. Let € > 0 is small enough and expp (B.(0)) C M™ is a geodesic

ball. Let ¢(t) be a smooth curve joining v(0) and ~(1) where v is a
geodesics started in P .

Y(t)

4
4
’

_ -c(t)

P NN
Then length of ¢(t) is: I(c) > (), and [(c) = () implies ¢ = 7.
Proof. Let ¢ C B, (round geodesic ball). Curve ¢(t) can be written as
¢ = expp (r(t) - v(t)) , @) =1,

where v(t) is a curve in tangent space Tp, and r(t) issuch that 0 < r < 1.
Let ¢(t;) # P forall t; € (0,1] and r(t) > 0 for all ¢; € (0,1].
We have for

flr@),t) = expp (r(t) - 0(t) , |o(®)] =1

de  Of , of
TR T
By Gauss Lemma (above) we have
af of
<§a§> 0
We have also [0f/0r] =1, so
de|” e 4 |2f]
H = wor |
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and
1 dC 1
/ Zldt > /wt)y dt > r(1) — r(0)

For ¢ — 0 we have r(0) =

So we get

0.
) =2 r(1) = 1(v)

At the same time the condition df/0t = 0 means v(t) = v(0) = const,
i.e. ¢ = v (geometrically for r/(t) > 0, otherwise: [(c) > (7)) .
Theorem is proved.

Lecture 33. Local minimality of geodesics.

Last lecture: For every point P € M™ there exists an e-ball (geodesic) B
containing P as a center such that geodesics is a shortest line between P
and any point ) € B .

Corollary 1. Let X be compact space and f, g : X — M"™ such 2 maps
that distance p(f(x), g(x)) is smaller than the minimum of all € (P) for all
P € f(X). Then f and g are homotopic.

Proof. Move f(x) to g(x) monotonically along /g(x)
unique minimal geodesics joining these points
f(x)

Corollary is proved.

Corollary 2. Let M™ be compact (or metrically complete) Riemannian
manifold. For every 2 points P, () with distance p (P, Q)) = d there exists
geodesics v, I(y) = d, joining P and Q.

Proof. Let us remind that d(P, @)) = mins[(§) , 7 joins P and () and
7 is smooth or piecewise smooth curve:

y
Q
P
Let us remind you the “Arcellat Principle” claiming that the set of piece-

wise smooth curves of length < T' is “precompact”. It means in particular
that every “Cauchy Sequence” of curves for which length is well-defined.
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Consider sequence of piecewise smooth curves 7, such that [ (v,) — d,
d = p(P, Q). Limit curve v, is such that [(7.) = d, but it can be not
smooth (even not piecewise smooth).

Take 2 points Pj, P> at 7, such that p (P, P,) < € (small enough).

./_f. Q
P P, Py Yoolt)

1

Replace v, from P, to P, by small geodesics joining them. By con-
struction new curve is shorter than ., or 7. is geodesics between P; and
P, . So, our statement follows.

Corollary is proved.

Remark. In the book D.C. the “Hopf - Rinow” theorem is proved for this
result. In particular, it claims that exp, is defined for all vectors in T,.(M™)
in complete Riemannian manifold. For compact manifold it simply follows
from the fact that manifold 77(M™) is compact and geodesic flow is well
defined for all time.

However, we presented here the “Arcellat” argument which was used in
many other variational problems since the great work of Hilbert who was
first to prove existence of minimizing geodesics in XIX Century.

See Hopf - Rinow theorem in D.C.

Now we return to Curvature
R(X,Y)Z — curvature tensor
X=@0W),Y =), 2=z W= .

R(X, Y) = (VyVX — VxVy — v[X,Y})
- curvature operator.

Index notations

(Ry),, = (V;Vi = ViV;) = R = —Ry = (Ru),
(Here [3“8]] = 0, X = &-, Y = 8j, Z = (9k, W = 31)

R(X,Y) — linear 0-order operator on tangent space (matrix).
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operator

A

R(X,Y) = Rﬁijuivj = Rxy

vector

R(X,Y)Z = R uv 2

lyij

number o
(R(X,Y)Z, W) = R;‘jij utv? 2 w? Gip

Formulas for symmetric connection were given, and for Rfm.j through Ffj :
(Especially for coordinate system such that g;;(P) = d;, O I;|p = 0).

Homework 11.

1. Compact Lie groups, bi-invariant Riemannian metric g — hyghy'.
Prove that e?* are geodesics (for SO; = RP® and SU, = S%). A is
from Lie Algebra: A' = —A (G = SO,), A' = —A , trA = 0 for
G = SU, .

2. Prove that the form
(A% A% = L(g, g)

gives right-invariant Riemannian metric where Af%(t) = g(t) g~ '(t), (A, A)
- any inner product in R®™ = Lie Algebra (n = k(k — 1)/2 for SOy,
n = k* —1 for SU). It is bi-invariant if (A, A) = TrA? | A' = — A
and (A, A) = TrAA , trA =0, A" = —A (groups G = SO, and
SUy). For left-invariant metric take A* = ¢g=1(t) g(¢) .

3. Find all geodesics in SUs,, joining [ and — 1.

4. Calculate intersection matrices for all compact 2-manifolds (closed, mod-
ulo 2).

5. Prove that for any open domain in compact 2-manifold U C M? inter-
section matrix of 1-cycles modulo 2 has finite rank (i.e. factor-space by the
annihilator is finite-dimensional).
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Lecture 34. Riemannian Curvature. Exam-
ples.

Consider M"™ | ¢ € R .
Curvature tensor.
Connection: Vy, X = 8;, Vxt = 8;¢ + ;¢

Curvature:

~

VxVy — VyVx — Vixy) = R
X:E)i,Yzﬁj,Rij:ViVj—VjVi:RfaR?

1-form (locally) - connection

2-form (locally) - curvature
R = Rjdi'ANde? = dA + ANA
(Matrix Multiplication).

Ro= dA + 5 [ANA

- same; written through the commutator - Lie Algebra multiplica-
tion.

Gauge Transformation: ¢ = G(x)¢(x)

A

I, - G'IG — G'o,G -
Vi) = Vi (Gp) = 8;(Gp) + Ty (Gy)
or: G (8,-@ L GTOG  + GTINNG go)

Rij — Gil Rij G
(calculation).

Conclusion: for tangent bundle R;; = (R.,,) is tensor.

k.ij
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Symmetric connection compatible with Riemannian metric (tangent bun-

dle)

Corollary:

ko _

Ly 09 09is 0gs;
27 ( Oxs * OxJ * ozt
Geodesic Equation

i 4 Ti(x) i'd® = 0

1) Euler - Lagrange equation for action

1
S = /— ||Z]|* dt or
2

2) Vid = 0.

Calculation of Curvature: Choose coordinate system such that

in such point

0 0
S _ S s
ik = @Fik - %ij
Symmetries of Curvature: Let R = 0is Rj,kl then
Rij;u = —Rijue = —Rjim Ruij = Riju

Bianchi:
Rijrs + Rjkis + Ryijs = 0

So R is quadratic form on the space A2Tp = A2R™ satisfying to Bianchi
identity (above) (check D.C. pages 91 - 93).

Sectional Curvature

R(X,Y,X,Y)

KXY) = Area (X,Y)
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X, Y - vectors,

Area (X,Y) = [XAY] = XP[YP = (X,V)? =

Y
[ (XX )
(X, y) (r,Y)
X
XAY
XAY € N°Tp = N’R"
R(XAY,XAY) - quadratic form on A?R" .
K > 0 - “Positive Curvature” (like S")
K < 0 - “Negative Curvature” (like H")
Ricci Curvature: (see D.C.)
Ry = Ry = R
Scalar Curvature (R — K = const - R ).
R = gisst , R = R;
. 1
Ric = — 1
Notation (D.C.)
) 1
Ricp (X) = — Z(R(X,Zi)X,ZZ)
Here |X| =1 and Zi, ..., Z,_; are orthonormal basis in R" = Tp ,

Z; L X . We have .
K = — E Ricp (Z;
n < icp (Z;)

2 - dimensional Manifolds

159



R = Riz12 - the only nonzero component.

(> ("

= QGaussian Curvature M? C R3 .

3 - dimensional Manifolds
R;; determines all Curvature Tensor.

4 - dimensional Manifolds
Einstein Equation:

1
Ri; — §R9ij = AL + pgy

where the term ATj; represents “Matter” and jg;; is the “cosmological

term” (or “dark energy”).

Lie Groups and “symmetric” spaces (“constant curvature tensor”)

Ve (Ri) = 0

Homeworks 10, 11. Solutions.

Homework 10. Solutions.

L f:S =8, fz)=2"+azz"""+ ...+ a.

We have homotopy fi(z) = 2" + t (a1 2" ' + ... + ap). For t =0 we
have fo = 2". For t =1 we have f; = f(z).

For fy = 2" we have exactly n roots of equation

zt =1

The point 1 =W € S? is transversal. So we have deg fy = deg fi = n.

2. Rational function f = P/Q = w .
Solve equation



(Fraction is irreducible).
Take point wy such that roots are distinct. We have deg f = max (deg P, deg Q).

3. Real polynomial f = apz™ + ... + a,, ay # 0. Let n = 2k + 1.
Then:
a0>0 ap<0
apg>0:degf =1,
/‘\/ (4 [ \ ap—0:degf = —1.
Consider the case n = 2k .
4. Gauss Map:
n(P)
= 1(P)
’y(t) 0 v(t + 2m), s - natural parameter.
V£ 0. P P — n(P) € S'.
t = s - const |,
y(®
n
dr = k(s)ds = dp - obvious.
T
5. 2-form

= xdyNdz — ydrANdz + zdx Ndy

Q
1. Rotate in (y,z) - plane:
xr—x , dyANdz — dyNdz

2. Rotate in (z,y) - plane:
z— 2z , drNdy — dexANdy

3. Rotate in (z,z) - plane:

Yy —y dr Ndz — dx N\dz

)

For (y,z) - plane we have: rotation of €2 is equal to rotation of = dyAdz
plus rotation of dz A (zdy — ydz) where

r—=x zdy — ydz — zdy — ydz
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Similar arguments we have for other relations.

So our form is invariant under all 3 rotations. Therefore it is invariant
under the whole SO;.

Homework 11. Solutions.

1. Compact Lie group, Bi-Invariant Metric (SO3 = RP® and SU, = S?) .

Let A* = — A be real 3 x 3 matrix. e € SO;. In some basis we
have
0 1 0
A = -1 0 0
0O 0 0

So all these geodesics

\

are straight lines from 0 to 7. So we proved it for SO3 . For SU, it is
the same geodesics because SUs/ +1 = SOs3 .

2. We have for ¢ — ggo:

d

g g7 1) = = (9(t)go) (9(t)go)" — 9(t) g7 (1)

Same proof for g — gog and g~ 'g for left shifts. So (A(t), A(t)) is right
(left) invariant inner product for A = gg=! (A = g7 '¢).
Right and Left shifts of the group commute with each other

Ry, Ly, = Lp, Ry, g — hagh

Right shift maps right invariant metric into itself, and left shift maps
right invariant metric into another right invariant metric g;; .

Rzl (9i5) = 9ij L?; (9ij) = Gij
For hy = hy' metric §; can be obtained from g;; at the Lie Alge-

bra by conjugation. So §;; = g¢;; for inner product (A, A) invariant under
conjugation. For SO, itis (A, A) = —TrA? , Al = — A,
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3. Geodesics in SU, are et (if it starts at I for ¢ = 0). So we need:

eAT = —] for some T. We have the following basis for sus:

3 I G I

A = <za O) , a€R
0 —ia

Fix time moment T such that ¢ = —1. We have then e4T = —T.

All other solutions can be obtained by the change of basis in C? (same T') :

i 0N i 0\
0 —i 9 o —i) 9 >

g € SU2 . We haveg € SUQ/Ul
4. All compact 2-manifolds M? :

Let us put

Zo® - ®Zy (2g times, M? is orientable),
Hy (M?, Zy) = Zo® - ®Zy (k times, for M? = RP?# ... #RP?),
ZQ@ZQ ) M2 - K2 .

01 . 0 0
1 0 ... 00
M? = S] Do over  Zs
0 0 . 01
0 0 . 1 0
1 0 . 0
, - 01 ...0 _
M* = RP*#...#RP” : L ) k times
0 0 1

2 _ 2. (01
M? = K?: (11

163



K*#RP? = T?#RP? = RP*#RP*#RP*> (7)

K? = RP*#RP* (7)

5. Let U be an open domain in any compact 2-manifold M? . Then inter-
section matrix

H1 (U, ZQ) — H1 (M2, Zg)

depends only on image of cycles in M? where it has finite rank. So inner
product in Hy (U, Zsy) also has finite rank.
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