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The real numbers b̄p(X) were invented first by Atiyah (see[1]) for compact
non-simply-connected n-dimensional manifolds X through the L2-cohomology
of its universal covering M . More general numbers b̄χ

p were defined by Singer
(see [2]) for every representation χ : π1(X) → A where A is a von Neuman
algebra with finite normalized trace (the Atiyah numbers b̄p(X) correspond
to the regular representation χ of the group π1(X) = Γ into the space l2(Γ).
It was found (see [3]) that in the classical Morse inequalities on the manifold
X one can replace ordinary Betti numbers bp by the numbers b̄χ

p for every χ.
In some cases von Neuman-Morse Inequalities are stronger than the ordinary
Morse Inequalities. Sometimes they allow to establish non-triviality of the
L2-cohomology for coverings of non-simply-connected manifolds.

It was established in the works [4, 5] that for M = Hn (Hyperbolic or
Lobachevski Space) and M–strictly Convex Domain with Bergman metric
we have b̄p = 0 for p 6= n/2. In the cases where b̄p = 0 and the Spectrum
of all Laplacians on the spaces of p-forms are separated from zero and or
spectrum touches zero, we define a von Neuman Analog of the Ray-Singer
Torsion R̄.

The fact that the Spectrum of ∆p touches zero, does not depend on
Riemannian Metric on X. For p = 0 such event takes place (see [6]) if and
only if Γ is amenable. For M = H2k+1 the spectrum of ∆p touches zero for
p = k, k + 1 only (see [4]). The power of t of the power-like decay for t→∞
of the θ(t) = TrΓ exp(−t∆p) also does not depend on metric,–or the power
entering the power-like asymptotics for λ → +0 for the density of states
Np(λ) = TrΓEλ(∆p). Here Eλ(∆p) is the spectral projector of the operator
∆p, and the trace TrΓ is defined by the integration along the fundamental
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domain of the Kernel, according to [1]. Using Variational Principle analogous
to [7], we prove following

Theorem 1 Let Np, θp and N ′, θ′ correspond to two different Riemannian
Metrics on the compact manifold X covered by M . There exists positive
nonzero constant C such that

Np(C
−1λ) ≤ N ′

p(λ) ≤ N(Cλ), C−1θp(Ct) ≤ θ′(t) ≤ C−1(C−1t)

If θ ≤ o(t−ε) for all p for t → ∞ where epsilon > 0 for all p = 0, ..., n, the
quantity R̄ is well-defined.

Conjecture:The estimates θp(t) = o(t−εp), εp > 0, are valid allways if
b̄p = 0.

For M = H3 we have θ1(t) ∼ ct−1‘/2) –see [8]2. It allows to define R̄ for
3-manifolds of the constant negative curvature. However, as Senya Vishik
communicated to us privately, in this case R̄ = 0. Probably, nontrivial von
Neumann Torsion might appear for the nontrivial representations different
from the regular one3.
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