
Four Lectures: Discretization and Integrability.
Discrete Spectral Symmetries

S.P. Novikov

University of Meryland, College Park, Meryland 20742-2431, USA
L.D.Landau Institute for Theoretical Physics, Kosygina 2, Moscow 117334, Russia
novikov@ipst.umd.edu and novikov@itp.ac.ru

1 Introduction

In these lectures I am going to consider the integrability phenomenon as a by-
product of the hidden symmetry of the spectral theory of some famous linear
operators. Our objective is to apply it to the spectral theory of these
operators. This approach (not pretending to be universal)has indeed worked
well since 1974 when the so-called finite gap 1D periodic and quasiperiodic
Schrodinger operators and corresponding solutions of KdV were discovered
(see [1]). Recently we developed a theory based on the discrete symmetries of
the continuous and discrete 1D and 2D Schrodinger operators (see [2, 3]). Some
results for the 1D Schrodinger operators were obtained in the works[4, 5, 6, 7].

Going back to the famous discovery of the so-called inverse scattering
transform for the KdV equation ut = 6uux − uxxx in 1967 (see [8]), we know
that it is based, in fact, on the interpretation of KdV as an isospectral defor-
mation for the 1D Schrodinger operator Lt = LA − AL,L = −∂2

x + u(x, t)
(see[9] where an infinite-dimensional commutative group of such deformations
was found; people call it the KdV hierarchy).

We call this KdV hierarchy a continuous spectral symmetry group
for the 1D Schrodinger operator L.

For the rapidly decreasing (”soliton-type”) class of functions u(x, t) → 0
when x → ±∞, the inverse scattering problem was solved many years ago
by Gelfand, Levitan, Marchenko and others. Therefore, the inverse scattering
transform was considered as an application of this theory for solving the KdV
equation.

However, for the x-periodic functions u(x, t), no good solution of the in-
verse spectral problem was known before. The approach started in [1] was
based on the connection of the 1D Schrodinger operator to KdV type sys-
tems (”higher KdV”), generating a KdV hierarchy. It led to the effective so-
lution of inverse spectral problems for the so-called ”finite-gap” Schrodinger
operators L and to the exact solutions of the nonlinear KdV equation. The
spectral theory of finite-gap operators, its connection with Riemann surfaces
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and completely integrable hamiltonian systems are (at least) as important as
the solutions of KdV. So the continuous spectral symmetry group certainly
played a fundamental role here.

During the last decade we started to study discrete spectral symme-
tries. In fact, some of these symmetries were known for many years. For
example, the substitutions called today ”Darboux transformations” for the
1D Schrodinger operator L were invented by Euler in 1742. There analogs for
the 2D Schrodinger operators were found by Laplace. The association of the
Darboux transformations with KdV was realized in the early 1970s under the
name ”Backlund transformations”. The interesting conjecture concerning the
connection of cyclic chains of such transformations with finite-gap periodic
potentials was formulated in the work [4] in the 1980s.

However, the studies of the remarkable spectral properties of the low-
dimensional Schrodinger operators based on the discrete spectral symmetries
started only in 1990s. One can say that these investigations have roots also in
the studies of the famous quantum physicists of 1930s and 1940s (Dirac and
Schrodinger) who started to work with such transformations in the modern
algebraic way and to use some examples of that kind for very important goals.

2 Continuous and discrete spectral symmetries
of 1D systems and spectral theory of operators.
1D continuous Schrodinger operator
and its discrete analogue

Let us consider a one-dimensional Schrodinger operator L = −∂2
x +u. For the

construction of the Darboux transformation Bc depending on the constant c,
we factorize L in the form

L+ c = QQ+ = −(∂x + a)(∂ − a) (1)

Such a factorization requires a solution for the Riccati equation

u+ c = ax + a2 (2)

For the real and bounded function u(x) we can always find a constant c big
enough, such that this factorization is possible. We call it strong factoriza-
tion. It depends on the parameter c and also on the solution of the Riccati
equation.

Any strong factorization generates a Darboux transformation L̃ =
Bc(L) of the operator L by the formula:

L̃ = Q+Q,L+ c = QQ+ (3)

Lemma 1 For any solution of the spectral equation Lψ = λψ, the new func-
tion Q+ψ = ψ̃ is a solution of the new spectral equation L̃ψ̃ = (λ+ c)ψ̃
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The proof of this lemma is trivial. Let us formulate some useful conclusions:
1 On the formal (local) level, the operator L̃ has ”almost” the same eigen-

functions as L except maybe one function: the operator Q+ has a kernel
Q+ψ0 = 0 or ψ0

x = aψ0.
2. Let us assume that we are dealing with Hilbert space L2(R). The func-

tion ψ0 belongs to this space (i.e. it is square integrable on the real line) if and
only if the spectrum of the operator L starts from the point −c, i.e. λ ≥ −c,
and ψ0 is a ground state. Therefore there is only one choice of the constant c
if operator L is semibounded.

Example 1 . Let L = −∂2
x + x2 is a quantum oscillator. We have a strong

factorization here

L+ 1 = −(∂x − x)(∂x + x);Q+ = ∂x + x;ψ0 = exp{−x2/2} ∈ L2(R)

In this case we have also the famous relations QQ+ − Q+Q = −2. All basic
eigenfunctions ψn for this operator can be obtained by the iterations ψn =
Qnψ0 with eigenvalues Lψn = (2n+ 1)ψn.

As we can see for the opposite operator L′ = Q+Q where Q′ = Q+, the
equation Qψ = 0 leads in this case to the function ψ′0 = exp{x2/2} which does
not belong to the space L2(R). The operator L′ is positive and strongly factor-
ized but its spectrum does not start from 0 because the ”instanton equation”
Q+ψ = 0 has no proper solutions.

As it has been well-known for many years in the Theory of Solitons, Dar-
boux transformations generate multisoliton solutions and a more general class
of ”solitons on the given background”. However, only recently their connection
with periodic and quasiperiodic finite-gap solutions and finite-gap Schrodinger
operators was revealed. Consider now a chain of Darboux transformations

. . . , Lk, Lk+1, Lk+2, . . . ;Lk+1 = Bck
Lk = L̃k (4)

We call chain periodic of the period N if LN +
∑
ck = L0. These chains

were studied in the work [4] assuming all ck = 0. In particular, an interesting
conjecture was formulated that for the odd values ofN = 2M+1 the operators
Lk in the periodic chain are the finite-gap ones. This conjecture was proved in
the stronger form in [5]: Let N = 2M + 1,

∑
ck = 0. Then the operator Lk is

an algebraic operator, i.e. there exist a differential operator A of the order
2M +1 such that [L,A] = 0. According to the result of [1], such operators are
finite-gap in the sense of the spectral theory if coefficients are smooth periodic
or quasiperiodic. For the case N = 2M + 1,

∑
ck = c 6= 0 it was proved in [5]

that there is a differential operator A of the order 2M + 1 such that

LA−AL = cA (5)

If all operators Lk in the cyclic chain are smooth, then the spectrum of all
of them is equal to the union of N arithmetic progressions with the same
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difference. We can say that these operators are analogous to the quantum
oscillator. For N = 3 we get new examples of operators with such remarkable
properties of the spectrum. The equation for finding potential reduces in this
case to the Painleve’ equation. Numerical calculations made by V.Adler in his
PhD show that it really has such nonsingular solutions.

Our conclusion is that even these simple discrete symmetries of the
1D Schrodinger operator on the line lead to new interesting results
in the spectral theory.

For the even values of N = 2M we don’t know of any classification of
periodic Darboux chains. This problem is open.

The discrete analog of the ”soliton-type” theory for the 1D Schrodinger
operator appeared many years ago in the theory of the so-called Toda Chain
and Discrete KdV systems (see[10, 11, 12]). The operator L here acts on the
functions of the discrete variable ψk, k ∈ Z. It has a form (for the Toda chain)
in terms of the unitary shift operators T = exp{∂x}, T : n→ n+1, T+ = T−1

L = cnT + cn−1T
−1 + vn;Lψn = cnψn+1 + cn−1ψn−1 + vnψn = λψn (6)

and reduction vn = 0 for the discrete KdV ([11, 12]).
It is interesting to point out that the reduction to standard classical dis-

cretization cn = 1, n ∈ Z cannot be recognized in terms of the inverse spectral
(scattering) data. It is noninvariant under the time dynamics of any nontrivial
isospectral system. As we shall see, it is noninvariant also under the disrete
Darboux transformations B±

c . Therefore we come to the following important
Conclusion: in order to construct a right (”good”) discretization of
the 1D Schrodinger operator L = −∂2

x + u(x), we need to replace
derivative ∂x by the ”covariant shift” operator ckT = exp{∂ + s(x)}
instead of standard shift operator T = exp{∂}; otherwise the class
of discretized operators will not have discrete (and continuous as
well) spectral symmetry transformations.

Let us construct them using the strong factorization of the first or of the
second type.

The first type discrete Darboux transformation B+
c has a form:

L = QQ+ + c;Q = an + bnT ;Q+ = an + bn−1T
−1; L̃+ = Q+Q (7)

The second type B−
c is defined in the same way but the role of T and T−1

are reversed:

L = RR+ + c′;R = un + vnT
−1, R+ = un + vn+1T ; L̃− = R+R (8)

The second type transformations are inverse to the first ones.
These transformations were studied in the works [6] and [2], Appendix

2. In particular, we proved that any cyclic sequence of the first type
transformations such that

∑
ck = 0 leads to the finite-gap (algebro-

geometric) discrete operators with Riemann surfaces of the genus
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no more than half of the period of the chain. However, if both types
are involved, the classification of cyclic chains remains unclear. This problem
is analogous to the classification of the periodic Darboux chains of the even
length for the continuous Schrodinger operator.

Let us present here two interesting examples of the discrete 1D operators
discussed from the algebraic point of view in the works [7, 6] and also in
[2],Appendix 2 from the viewpoint of the spectral theory.

Example 2 . Let L = QQ+ + c and QQ+ − Q+Q = const. The operators
Q,Q+ can be easily found in the form

Q = 1 +
√
a+ bnT ;Q+ = 1 +

√
a+ b(n− 1)T−1

However, these operators cannot be real and adjoint to each other on the whole
lattice Z because linear function a + bn cannot be positive for all n ∈ Z. We
require the ”quantization condition” a/b = m ∈ Z and positivity a > 0, b > 0.
Consider these operators acting on the subspace H+ in the Hilbert space L2(Z)
such that ψn = 0 for n ≤ m. Let n = m+k and k > 0. The operators Q,Q+, L
are well-defined on the space H+. The ground state Q+ψ0 = 0 is such that

(ψ0
k)2 =

b−k+1

(k − 1)!

We can see that it is a Poisson distribution. The eigenfunctions ψl = Qlψ0

are equal to the so-called Charlet polinomials in the discrete variable k mul-
tiplied by the ground state ψ0

k. Our formula gives a good definition of these
polynomials on the half-lattice Z+ orthogonal corresponding to the Poisson
weight. As far as I know, this discrete realization of the Dirac Harmonic os-
cillator is not mentioned in the traditional literature in quantum mechanics.
The eigenvalues, of course, are the same as in the standard realization of the
commutation relations: λl = lb, l ∈ Z.

Example 3 Consider now a family of operators Lc = QcQ
+
c + const where

Qc = 1 + canT , the constant a 6= 0 is fixed, c 6= 0. We have the following
relations

a2Q+
c Qc = Qc′Q

+
c′ +D,D = a2 − 1, c′ = ca2 (9)

where a is the same for all operators involved.

Theorem 1 For a > 1 the operator L = Q+Q acting in the Hilbert space
L2(Z) has a discrete spectrum λn = 1− a−2n, n ≥ 0 for λ < 1.

For a < 1 the operator L = Q+Q has a discrete spectrum λn = 1−a2n, n >
0 for λ < 1.

In both cases the spectrum is continuous for λ ≥ 1

The investigation of the spectrum of this operator for λ ≥ 1 is not
done yet.

For the proof of this theorem, we solve equations Qcψ
0 = 0 and Q+

c ψ
0 = 0

for all c 6= 0. Selecting the cases when our solution belongs to the space L2(Z),
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we apply the ”creation operators” Qca−2 and get higher states for all values
of c but the actual value of c is shifted every time when we apply the creation
operator:

ψ0
k = (−1)kc−ka−(k−1)(k/2, k ∈ Z (10)

ψl = QcQca2Qca4 . . . Qca2l−2ψ0 (11)

3 2D Schrodinger operator.
Discrete spectral symmetries,
spectral theory of the selected energy level,
and space/lattice discretization

Already in the XVIII century Laplace invented the transformations which we
are going to use later as discrete spectral symmetries associated with
one spectral level only. Let us consider a Hyperbolic Laplace equation
on the plane x, y:

Lφ = φxy +Aφx +Bφy + Cφ = 0 (12)

where A,B,C are some known functions. We can present it in the form (a
weak factorization of the first type)

Lφ = (Q1Q2 + 2W )φ = {(∂x +A)(∂y +B) + 2W}φ = 0 (13)

where 2W = C − AB − Bx, or in the opposite form (a weak factorization
of the second type)

Lφ = (Q2Q1 + 2V )φ = {(∂y +B)(∂x +A) + 2V }φ = 0 (14)

where 2V − AB − Ay = C. So we have 2V − 2W = Ay − Bx = 2H(x, y) =
[Q1, Q2]. We call the quantity H a magnetic field or a curvature for the
operator L. There are natural Gauge Transformations for this operator

L→ efLe−f , φ→ efφ (15)

for any function f(x, y). The quantities W (or V ) and H are only invariants
of the gauge transformations.

By the Laplace transformation we call the following map

L→ L̃ = WQ2W
−1Q1 + 2W,φ→ φ̃ = Q2φ (16)

By the opposite Laplace transformation we call the following map

L→ L̃′ = V Q1V
−1Q2 + 2V, φ̃′ = Q1φ (17)
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Lemma 2 For any solution Lψ = 0 we have L̃ψ̃ = 0 and L̃′ψ̃′ = 0. These
transformations are inverse to each other modulo gauge transformation. For
the case of the strong factorization W = const or V = const these transfor-
mations transform every eigenfunction Lψ = λψ of the operator L into the
eigenfunction ψ̃ or ψ̃′ for the operator L̃ or L̃′, correspondingly.

The proof of this lemma is almost obvious: the equation Lψ = 0 implies
Q1ψ̃ = −2Wψ by definition. Therefore we have W−1Q1ψ̃ = −2ψ. Applying
Q2 to both sides and multiplying by W after that, we get the desired result.
Our lemma is proved for the first type. For the second type the proof is similar.
Let us prove now that they are inverse to each other: Performing the second

type after the first one , we come to the operator ˜̃L
′

= WLW−1 Taking
W = exp{f} we get a gauge equivalence if W 6= 0. Lemma is proved.

Lemma 3 The Laplace transformations are gauge invariant. In terms of the
gauge invariant quantities, they can be written in the form:

W̃ = W + H̃; H̃ = H + 1/2∂x∂y logW (18)

Let us demonstrate this here by following a simple but important theorem (in
fact, known already in the XIX century to Darboux).

Theorem 2 Let an infinite Laplace chain is given

. . . , Lk, Lk+1, . . . : Lk+1 = L̃k (19)

Then this chain can be described by the 2D Toda Lattice System and vice-versa.

Proof. Let W = ef . When we have

efk+1 = efk +Hk+1

Hk+1 = Hk + 1/2∂x∂yfk

as a definition of the Laplace chain in terms of gauge invariant quantities. So
we exclude magnetic field using the first equation:

Hk+1 = efk+1 − efk

After substitution of this expression into the second equation and making
change of the dependent variables fk = gk+1 − gk, we come exactly to the
famous 2D Toda lattice system

1/2∂x∂ygk = egk+1−gk − egk−gk−1 (20)

People in Soliton theory found the complete integrability of this system
(see[13]) but did not know about its connection with the 2D Schrodinger
equation (or Laplace equation in hyperbolic case).
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Already in the XIX century, geometers like Darboux with his pupils and
others started to use hyperbolic Laplace transformations for the needs of the
theory of surfaces imbedded in the euclidean space R3. They considered also
Laplace chains and periodic chains in particular. Simple calculations show
that for the period N = 2 where L2 = L0, we come to the equation

∂x∂yG(x, y) = −8sinh{G(x, y)} (21)

For the period N = 3 assuming that the magnetic field is equal to zero L0 =
L3 = ∂x∂y + 2W (x, y), we come to the equation

∂x∂yG = eG − e−2G (22)

Both of these systems are well-known in the theory of completely integrable
systems and were obtained in completely different way, with no relationship
to the 2D (linear) Schrodinger operator.

We are going to apply these ideas to the spectral theory of the 2D
Schrodinger operator. Let us consider now the elliptic Schrodinger op-
erator written in the weakly factorized form through the complex derivatives
∂ = ∂x − i∂y, ∂̄ = ∂x + i∂y:

L = (−∂ +A)(∂̄ +B) + 2W (23)

We call operator L physical if magnetic field H = 1/2(Az̄−Bz) and potential
W = exp{f}, both are real. We call the operator periodic if both of them are
smooth and double periodic on the plane R2. We call the periodic operator
topologically trivial if the magnetic flux [H] through the elementary cell
K is equal to zero:

[H] = H̄|K| =
∫ ∫

K

H(x, y)dxdy = 0 (24)

We call the operator quantized if [H] ∈ 2πZ From the formulas for the
Laplace transformations written through the gauge invariant quantities above,
we deduce the following

Lemma 4 For the smooth physical double-periodic operators we have for the
fluxes through the elementary cell:

[H̃] = [H]; [W̃ ] = [W ] + [H] (25)

These changes lead only to the replacement of the operators ∂x, ∂y by
the complex ones ∂, ∂̄ in all formulas above for the Laplace transformations
and Laplace chains. All formal calculations remain unchanged. However, the
equations responsible for the periodicity property of chains became elliptic.
In the global double periodic problems on the plane R2, this fact led to the
important conclusions (see[2]):
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Theorem 3 Let a periodic elliptic Laplace chain is given such that all 2D
Schrodinger operators Lk in this chain are smooth periodic in R2 and physical.
Then all these operators are topologically trivial. All of them have a family of
Bloch-Floquet solutions Lψ = 0 parametrized by the points of some Riemann
surface of finite genus with two marked points (”infinities”).These solutions
can be found explicitly. This family contains a subfamily of the bounded func-
tions on R2 providing a basis for the spectral (i.e. energy) level λ = 0 in the
Hilbert space L2(R2). This class of 2D Schrodinger operators was invented in
the work [15] in 1976.

Nothing like that exists in the hyperbolic case. The reason for this is that in the
smooth elliptic case any nonlinear system on compact manifold (2-torus here)
may have only a finite-dimensional family of global solutions. For the 1+1
dimensional completely integrable systems describing the periodicity property
of Laplace chains, this fact leads to the linear dependence of the higher flows
in the corresponding hierarchy and finally to the Riemann surfaces of finite
genus, exactly as it was found for KdV in 1974 (see in [16]).

Example 4 Let N = 2 is the period. We come to the equation

∆f0 = −8sinh{f0};W0 = ef0 ; f0 = −f1;H0 = 2sinh{f0} (26)

Exactly this equation appeared in the theory of the toroidal surfaces in R2

with constant mean curvature k1 + k2 = const (see in[17] the details and
the authors of this discovery). It was observed in this theory that all of them
can be obtained from the Riemann surfaces of finite genus like in the periodic
theory of solitons. Our theorem can be considered as a natural extension of
that technical result with a completely different interpretation.

We introduced also a notion of semi-cyclic chain L0, . . . , LN satisfying
to the identity:

L0 = LN + C (27)

The most interesting new class of Laplace chains L0, . . . , LN leading to
the operators with very specific anomalous spectral properties is the class of
the quasi-cyclic chains L0, . . . , LN , such that the boundary operators are
strongly factorizable (all factorizations on the boundary are assumed to be the
first type, and the Laplace transformations are assumed to be of the second
type):

L0 = −(∂ +A)(∂̄ +B), LN = (∂ +A′)(∂̄ +B′) + CN (28)

where C = const.

Lemma 5 Both semicyclic and quasicyclic Laplace chains of the length equal
to one N = 1 lead to the Landau Operator QQ+ with magnetic field equal to
constant H0 = const and W0 = 0, V0 = H0. Let H0 > 0. Its spectrum consists
of the infinite number of highly degenerate Landau levels Λk, k ≥ 0, λk = kH0,
isomorphic to each other by the operator Q:
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Q = ∂ +A(z, z̄) : Λk → Λk+1; (29)

where Q+Λ0 = 0 and Q+ = ∂̄ +B(z, z̄)

Let a quasicyclic chain of the length N is given, H0 > 0 and all operators
Lk = Q+

k Qk + 2Vk in the chain are smooth physical and double-periodic on
the plane R2 where Qk = (∂ + Ak) and Q+ = (∂̄ + Bk). It is convenient
sometimes in the physical case to choose gauge conditions such that Q and
−Q+ are adjoint to each other, i.e. Ā = −B. We have always

V0 − 1/2∆ log V0 +H0 = V1;H1 = H0 − 1/2∆ log V0

for the second type Laplace transformation.

Theorem 4 The operator LN − CN = QNQ
+
N has a highly degenerate space

of ground states
Q+

Nψ
0 = 0;λ0 = 0

isomorphic to the Landau level Λ0. It has also a second highly degenerate level
ΛN ;λN = CN = N [H0], isomorphic to the Landau level. The second level can
be obtained from the solutions Q+

0 φ
0 = 0 belonging to the space L2(R2), by

the formula:
ψ = (∂ +AN−1) . . . (∂ +A0)φ0

The exact elliptic formulas for the functions φ0 and ψ0 can be extracted from
the work [2] for the case where the magnetic flux is quantized. This formula
is based on the result of [18] for the strongly factorized Schrodinger operators
where these eigenfunctions of the ground level were calculated. The result
itself remains true in the case of the irrational fluxes as well, because we may
use a completely localized basis in the space of groundstates instead of the
magnetic Bloch functions used in these works.

Example 5 Consider the case N = 2. The condition of the strong factoriza-
tion of the boundary operators leads to the equation

∆g(z, z̄) = 4eg − 2C2;V0 = H0 = exp{g} (30)

We have also C2 = W2 = V1 and H2 = H1 = H0 − 1/2∆g = C2 − H0. We
can see that this equation has a lot of periodic smooth solutions depending on
one variable. It is not hard to prove that it has a lot of smooth double-periodic
solutions essentially dependent on both variables x, y.

4 Discretization of the 2D Schrodinger operators
and Laplace transformations
on the square and equilateral lattices

In the continuous case all formal calculations for the hyperbolic and elliptic
cases were identical. The difference between them originated in the global
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properties only. For the difference operators these cases look completely dif-
ferent even on the formal level.

I. Let us start with the hyperbolic case. The discrete Schrodinger (or
Laplace) equation is defined for the function ψn where n = (n1, n2) on the
square lattice n ∈ Z2 on the plane by the formula:

0 = Lψn = anψn + bnψn+T1 + cnψn+T2 + dnψn+T1+T2 (31)

where n+T1 = (n1+1, n2);n+T2 = (n1, n2+1). The operator L is well-defined
modulo gauge transformations

L→ fnLgn;ψn → g−1
n ψn (32)

where fn, gn are nonzero functions.
There exists a unique weak factorization of this operator written in the

form
L = fn[(1 + unT1)(1 + vnT2) + wn] = fn[Q1Q2 + wn] (33)

(this is a first type factorization). It generates a (first type) Laplace transfor-
mation

L→ L̃ = wnQ2w
−1
n Q1 + wn; ψ̃ = Q2ψ (34)

up to gauge transformation. As in the continuous case, the coefficients
un, vn, wn can be easily found by elementary algebraic formulas. It was ob-
served, in fact, in 1985 (see [19]) that the equation Lψ = 0 on the square
lattice (above) has a nice family of algebra-geometric exactly solvable cases.
Such solvable cases and discrete spectral symmetries normally appear exactly
for the same classes of operators.

There are many orthonormal bases T ′1, T
′
2 equivalent to each other in the

square lattice. We can take any one of them: (T ′1, T
′
2) = (T±1

i , T±1
j where

i =6= j and i, j = 1, 2. Any choice of basis defines a Laplace transformation

L→ L̃′; ψ̃′ = Q′
2ψ

through the weak first type factorization of the form

L = f ′n[Q′
1Q

′
2 + w′n];Q′

1 = 1 + u′nT
′
1;Q

′
2 = 1 + v′nT

′
2 (35)

We have a total number of eight for the Laplace transformations defined in
this way.

Lemma 6 The Laplace transformations defined above generate a group with
four generators B±,± corresponding to the bases T ′1 = T±1

1 , T ′2 = T±1
2 . The

Laplace transformations correspondent to the basis T ′1, T
′
2 are inverse to the

Laplace transformation correspondent to the basis T ′2, T
′
1 modulo gauge trans-

formations.

This statement can be checked by elementary calculation.
As in the continuous case, we have gauge invariant quantities.
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Lemma 7 A pair of gauge invariant quantities (the ’discrete curvatures”) is
defined

K1n =
bncn+T1

dnan+T1

K2n =
cnbn+T2

dnan+T2

All other gauge invariants, including the potential wn, can be expressed through
them. In particular, the potential wn has a form K1n = (1 +wn)−1. A ”mag-
netic field”

Hn =
vnun+T2

unvn+T1

can be expressed through the quantities K1,K2. They also can be expressed in
terms of wn,Hn.

As in the continuous case, it is convenient to write Laplace transformation in
terms of wn,Hn:

Lemma 8 The Laplace transformation can be written in the form

1 + w̃n+T1 = (1 + wn+T2)
wnwn+T1+T2

wn+T1wn+T2

H−1
n

H̃n =
1 + wn+T2

1 + w̃n+T2

For the infinite Laplace Chain

H̃k = Hk+1, w̃k = wk+1

we can express Hk through wk, wk+1 as in the continuous case. It leads to
the completely discrete 2D Toda lattice (it is a discrete 3D system found by
Hirota many years ago from completely different ideas)

(1 + wk+2
n+T1

)(1 + wk+1
n+T2

)

(1 + wk+1
n+T1

)(1 + wk
n+T2

)
=
wk

n+T1
wk

n+T2

wk
nw

k
n+T1+T2

Its reduction for the periodic Laplace chains of the length N = 2 leads to
the nice analog of the sinh-Gordon equation (see [3]). In the discrete case we
have a big group of Laplace transformations generated by the four generators
(above). This group has not been studied yet.

II. The elliptic case is especially interesting. It turns out that in this case
the right discretization of the second order elliptic real selfadjoint operators
(i.e. operators of the form L = −∆+U(x, y)) admitting Laplace transforma-
tions should be constructed on the equilateral triangle lattice. So in this
case even the form of discretized elliptic operators has nothing to do with the
hyperbolic case described above.



Discretization and Integrability 13

For the equilateral triangle lattice we have a basis T1, T2 such that the shift
operator T1T

−1
2 has the same length. Therefore any vertex n = (n1, n2) in the

lattice has exactly six closest neighbors n+ T ′ where T ′ = T±1
1 or T ′ = T±1

2

or T ′ = (T1T
−1
2 )±1. We write a real selfadjoint operator in the form:

L = an + bnT1 + cnT2 + dn−T2T1T
−1
2 + adjoint

We consider the zero level gauge transformations preserving a form of
the operator and a zero spectral level Lψ = 0:

L→ fnLfn, ψn → f−1
n ψn

Lemma 9 Any real selfadjoint operator of this form with nonzero coefficients
bn, cn, dn can be presented in the weakly factorized form of the first type

L = QQ+ + wn;Q = xn + ynT1 + znT2

where T+
i = T−1

i , i = 1, 2; (AB)+ = B+A+. This form is unique if the coeffi-
cients c, b, d, x, y, z are positive.

Any equivalent basis T ′1, T
′
2 with angle equal to 2π/3 defines the analogous

Laplace transformation. There is no difference between the pairs T ′1, T
′
2 and

T ′2, T
′
1 in this factorization. So we have six different pairs:

(T1, T2), (T2, T2T
−1
1 ), (T2T

−1
1 , T−1

1 ), (T−1
1 , T−1

2 ), (T−1
2 , T1T

−1
2 ), (T1T

−1
2 , T−1

2 )

Lemma 10 For the nonzero potential wn a Laplace transformation is defined

L̃ = w1/2
n Q1w

−1
n Q2w

1/2 + wn; ψ̃ = w−1/2Q1ψ

and the operator L̃ is real selfadjoint. The Laplace transformations corre-
spondent to the inverse bases T1, T2 and T−1

1 , T−1
2 are inverse to each other.

Therefore the group of Laplace transformations is generated by three genera-
tors.

In the work [3] we calculated how these three generators can be expressed
through the first one and rotations of the lattice. Therefore there is essentially
one Laplace transformation only in this case.

Let us consider now a special class of the purely factorizable operators in
the strong sense:

L = QQ+ + const

(”white factorization”) or

L = Q+Q+ const

(”black factorization”) where Q = xn + ynT1 + znT2. Especially interesting
here is the case when the white triangle equation
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Q+ψ = 0 (36)

for the first case, or the black triangle equation

Qψ = 0 (37)

for the second case, has nontrivial solutions belonging to the space L2(Z2).

Example 6 Let Qc,d = 1 + cel1(n)T1 + del2(n)T2 where l1, l2 are the linear
forms in the variables n1, n2 with real coefficients

li =
∑

j

lijnj ; i, j = 1, 2;nj ∈ Z (38)

Theorem 5 The black triangle equation Qψ = 0 has an infinite dimensional
subspace of solutions belonging to the space L2(Z2), if one of the following
conditions is satisfied

a)lii > 0, i = 1, 2; l11l22 − l212 > 0

b)lii > 0, i = 1, 2; l11l22 − l221 > 0

c′)l11 > 0; l11l22 − l212 > l11(l21 − l12)

c′′)l22 > 0; l11l22 − l221 > l22(l21 − l12)

The operator L = Q+Q has a zero point λ = 0 as a point of discrete spectrum
in these cases, such that its multiplicity is infinite.

There is also a similar statement for the white triangle equation.
For the proof of the theorem, we make a substitution:

ψn = e−K2(n)ηn

where K2(n) is a quadratic form in the variables n1, n2. After that we assume
that coefficients of the equation for the quantity ηn either depend on the vari-
able n1 only (this is the case a) above) or depend on the variable n2 only (this
is the case b) above) or depend on the variable n1 + n2 only (this assumption
leads to the cases c’) or c”) above).

In case a) we are looking for the solutions of the form

ηn = wn2φn1

Let l21 > l12. We choose the value of w = wq such that φn1 = 0 for n1 >
q; q ∈ Z. This assumption leads to the solutions belonging to the space L2(Z2).
Other cases can be considered in a similar way–see details in [3].

Consider now a special subcase of this example where

2l11 = 2l22 = l12 + 121 (39)
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Lemma 11 The operators Q,Q+ satisfy to the following relations

Qc,dQ
+
c,d − 1 = u−2(Q+

c′,d′Qc′,d′ − 1) (40)

where u = el11 , v = el12 , c′ = u2c, d′ = u2d.

Using these relations and the groundstates found before, we come to the fol-
lowing

Theorem 6 The spectrum of operators L = QQ+ and L̃ = Q+Q under the
conditions above, is discrete for λ < 1 and can lie in the following points only:

a)λj = 1− u2j , j ≥ 0, u < 1

b)λj = 1− u−2j , u > 1

In the following cases the spectrum of operator L occupies all these points,
and the spectrum of operator L̃ occupies all these points except λ0 = 0

u−3 > v−1 > u−1 > 1

u−1 > max(v, v−1) ≥ 1

The replacement u→ u−1 in these conditions leads to the interchange between
L and L̃ in the theorem. All these levels are infinitely degenerate (”The discrete
analogs of Landau levels”).

Nothing is known about the spectrum for λ ≥ 1. It is certainly continuous.
The interesting multidimensional analogs of the operators satisfying to the
relation above were found in the work [3] for the multidimensional analogs of
the equilateral lattice, but there spectrum is not found yet.

In the special case u = 1 of the example above, we have

Qc,dQ
+
c,d = Q+

c,dQc,d

Here we should consider both (white and black triangle equations) simultane-
ously:

Qψ = 0;Q+ψ = 0

This situation can be naturally extended to the more general pair of equations
(black and white):

Q1ψ = 0;Q2ψ = 0

This pair leads to the ”discrete curvature” making an obstacle for the local
existence of solutions around every vertex. These ideas were developed in [3]
in a much more general situation.
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5 2D manifolds with the colored
black-white triangulation. Integrable systems on a
trivalent tree.

In the work [3] a theory of Laplace transformations was developed on the 2D
manifolds with the colored ”black-white triangulation”. We assume
that a color (black or white) is assigned to every triangle in the triangulation
such that any triangles with common edge should have opposite colors. The
black triangle operator Q can be defined by the field associating number bP :T

to the pair P, T where T is a black triangle, and P is its vertex P ∈ T . We
define operator Q by the formula

ψ̃T = QψT =
∑
P

bP :TψP :T

It maps the space of functions on the set of vertices into the space of functions
on the set of black triangles. The factorized operators have a form L = Q+Q;
their zero modes satisfy to the black triangle equation

QψT = 0

This structure permits to define combinatorial geodesics consisting of
edges and passing every vertex ”as a straight line” (i.e. the numbers of tri-
angles from both its sides should be equal to each other). The right (left)
horocycles are such lines that there is exactly three triangles from the right
(left) side of it in every vertex. The right (left) curvature of the combinatorial
line is measured by the number of triangles from the left (right) side of it in
the vertices. This structure imitates somehow conformal geometry. In partic-
ular, the black (or white) triangle equation can be considered as reasonable
discrete analogs of the complex (covariant) ∂ + A and ∂̄ +B operators: they
factorize the second order elliptic operators (it does not matter that complex
numbers are not involved in their definition); they are ”more elliptic” than
any other first order discrete operators known until now.

Example 7 Let bP :T = 1 for the operator Q. The operator L = Q+Q can
be compared with Laplace-Beltrami operator L0 = dd∗ where d is a standard
boundary operator, and d∗ is a coboundary operator. If RP is a number of
triangles entering the vertex P , we have

L0ψP = −
∑
P ′

ψPP ′ +RPψP

LψP =
∑
P ′

ψPP ′ +RPψP

Therefore we conclude that there is an equality

L = −L0 + 2RP
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The case RP = 6 corresponds to euclidean geometry. In principle, a quantity
like RP corresponds to something like the scalar curvature.

Boundary problems of the Dirichlet type for the triangle equations can
be posed for the bounded simply-connected domains on the plane with the
black-white triangulation. However, careful analysis of the admissible bound-
ary functions is required.

Example 8 Let me remind here that in the euclidean plane with equilateral
lattice Z2 the black triangles have a form n, n + T1, n + T2 for all n ∈ Z2.
Consider any lattice straight line Z ′ dividing Z2 into the parts

Z2 = R+

⋃
R−;R+

⋂
R− = Z ′

where R+ touches its boundary Z ′ by the black triangles. Starting with arbi-
trary data φn, n ∈ Z ′, we always can find unique solution to the black triangle
equation Qψn = 0 in the domain n ∈ R+ such that ψ = φ on the boundary.
This initial value problem is hyperbolic. However, the initial value problem in
the other direction R− is parabolic: for finding a solution in the domain R−
to the black triangle equation Qψ = 0 such that ψn = φn for n ∈ Z ′ we should
require some decay for the Cauchy data φn on the line Z ′. The operator ex-
pressing the solution ψ on any line parallel to R through the initial value φ
became nonlocal in this domain: you have to integrate along the whole line Z ′.

Now let us consider a plane R2 with a colored black-white triangu-
lation. Studying the Dirichlet-type boundary problems, we start with some
simply connected bounded triangulated sub-domain D in it with the thin
boundary polygon Γ = ∂D. It means that there are no triangles in D whose
vertices all belong to the polygon Γ . We call a boundary edge white if its
white side lies inside of the domain D, otherwise we call a boundary edge
black. We have

|Γ | = Γb + Γw

where Γb and Γw are exactly the numbers of black (white) boundary edges in
Γ .

The elliptic-type Dirichlet boundary problem is to find a solution to the
black triangle equation Qψ = 0 in the domain D such that ψP = φP on the
boundary P ∈ ∂D = Γ . It turns out that for the correct solution of this
problem we should start with the boundary function φ given in some part of
the boundary only:

1. The total number of known values φP , P ∈ Γ should be equal to the
number V −Tb where V is the number of vertices in D, Tb(Tw) is the number
of black (white) triangles, and Tb + Tw = T, Tw = Tb +∆ by definition.

Lemma 12
∆ = −(Γb − Γw)/3

V − Tb = 1 + (|Γ |+∆)/2
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The proof of this statement follows easily from the topology of the plane. Let
us denote by the letters V,E, T = 2Tb + ∆ the numbers of vertices, edges,
triangles and black triangle Tb correspondingly in the domain D. From the
Euler identity and elementary combinatorics we have

V − E + T = 1;E = 3/2T + |Γ |/2;∆ = −(Γb − Γw)/3

The total number of unknown quantities is equal to V . The number of equa-
tions is equal to Tb where T = Tb + Tw, Tw = Tb + ∆. So the number Q of
independent data should be equal to

Q = V − Tb = 1 + (|Γ |+∆)/2

Lemma is proved.
2. For the ”elliptic–type” boundary problems the set of known values

should never contain both boundary vertices P1 ∪P2 = ∂l of any black edge l
on the curve Γ = ∂D. We are going to develop this subject in the next work.

III. Let us consider now a trivalent tree following the work [20]. Many
people studied the second order (Laplace-Beltrami) difference operators on the
trees, but nothing like hidden integrability of the soliton type was found for
them. We are going to consider graphs (one-dimensional simplicial complexes)
with the natural geodesic metric such that the length of every edge d(PP ′)
is equal to one, and every edge has exactly two vertices PP ′ . There are no
cycles in the trees by definition.

The operator L acting on the functions of vertices

LψP =
∑
Q

bPQψQ

is real if all coefficients are real. It has an order k equal to the maximal
diameter of the interaction domain in the vertices P , i.e. k = maxP d(Q1Q2)
such that bPQ1 6= 0, bPQ2 6= 0. The real operator is symmetric or selfadjoint
if bPQ = bQP . A selfadjoint operator should have an even order k = 2l, l =
0, 1, 2, . . .. For the second and fourth order cases we frequently numerate the
highest order coefficients by the pair of adjusting edges bPP ′′ = bRR′ , and the
second order terms by one edge bPP ′ = bR. Consider now the set of all fourth
order real selfadjoint operators L on the trivalent tree such that the highest
order coefficients are always positive

bPP ′′ > 0; d(P, P ′′) = 2

LψP =
∑

bPP ′′ψP ′′ + bPP ′ψP ′ + wPψP

where d(PP ′′) = 2, d(PP ′) = 1. Let me remind that in 1976 the so-called
L-A-B-triples were invented and studied in the works [23, 15] as completely
integrable soliton systems associated with the zero level of the 2D Schrodinger



Discretization and Integrability 19

operator on the Euclidean planeR2. Their discretization on the regular lattices
Z2 was discussed above.

Trivalent tree Γ has a geodesic structure analogous to the 2D hyperbolic
(noneuclidean) plane. As we shall see, nontrivial L − A − B triples appear
here for the fourth order selfadjoint operators. Nothing like that exists here
for the second order difference operators.

Theorem 7 There exist a nontrivial time dynamics of the form

Lt = LA−BL

where the difference operators A,B have second order and B = At

AψP =
∑

cPP ′ψP ′

The coefficients cPP ′ for the edges R = PP ′ can be calculated by the following
formula. Fix some ”initial” point P0 ∈ Γ ; For every point P ∈ Γ there is
a unique simple path γ = [P0, . . . , P ] consisting of the edges R0, . . . , Rk and
joining the initial point with point P . We introduce a multiplicative one-cocycle
Ψ(R) whose value for the oriented edge R = Q1Q2 can be described in the
following way. Let the edges R′1, R

′
2 enter the first vertex Q1, and the edges

R′′1 , R
′′
2 come out of the second vertex Q2, not one of these edges coincides

with R. We define this cocycle and the coefficients c

Ψ(R) = −
bRR′′

1
bRR′′

2

bR′
1RbR′

2R

cR = − 1
bR′

1R′
2

 ∏
Ri∈γ

Ψ(Ri)


where R = PP ′

There is nothing surprising here that this expression is nonlocal: let me remind
that for the best known hierarchy (the so-called ”Novikov-Veselov” hierarchy
[21, 22]) associated with the 2D Schrodinger operator L, such nonlocality also
is presented. It is presented also in the famous KP hierarchy, so it always
appears for the 2 + 1-systems.

Theorem 8 The generic real fourth order operator L on the trivalent tree
Γ admits a one-parametric family of factorizations through the second order
operators

L = QtQ+ uP

where QψP =
∑

Q dPQψQ + vPψP and dPQ > 0,

bPP ′′ = dP ′P dP ′P ′′ ; bPP ′ = dP ′P vP ′ + dPP ′vP

wP = v2
P +

∑
P ′

d2
P ′P + uP

Therefore the Laplace transformation are defined for this class of operators.
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Recently in the work [24] these results were extended to all trees: the last
theorem is not true anymore for the generic operators, but for the subclass
of factorizable real selfadjoint fourth order operators L the analog of the first
theorem remains true.
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