RANDOM SETS OF UNIFORM CONVERGENCE

B. S. Kashin and L. A. Tsafriri

In [1], P. L. Ul'yanov posed the question of characterization of sets σ ⊂ Z for which the functions \(\{e^{2\pi inx}\}_{n \in \sigma} \) form a basis for the subspace of \(C(0, 1) \) which they generate. In other words one must determine for which sets \(\sigma \) the quantity

\[
U(\sigma) = \sup_{s, \{a_n\}} \left\| \sum_{n \in \sigma \cap [-s, s]} a_n e^{2\pi inx} \right\|_{\infty}
\]

is finite, where the supremum is taken with respect to all \(s \in \mathbb{N} \) and all finite sequences \(\{a_n\}_{n \in \sigma} \neq 0 \).

We shall call a set \(\sigma \) for which \(U(\sigma) \) is finite a set of uniform convergence (U. C. set).

The article [1] contains two basic questions: one of them is to determine whether \(\sigma = \{k^2\}_{k \in \mathbb{N}} \) is a set of uniform convergence, and the second, of more general character, is to determine how dense a U. C. set can be.

The first problem is completely solved by K. I. Oskolkov [2] (cf. also [3]), who showed that for any polynomial \(P(x) \) with integer coefficients \(\sigma = \{P(n)\}_{n \in \mathbb{N}} \) is not a U. C. set.

The problem of possible density of sets of uniform convergence remains open. It can be reduced to the question of finding for given \(N \) a subset \(\sigma \subset \{-N, \ldots, N\} \) with maximal number of elements for which \(U(\sigma) \) is bounded by a constant independent of \(N \). This problem can also be considered for other orthonormal systems, in particular for a Walsh system \(\{W_i\}_{i=1}^{\infty} \).

The simplest examples of sets of uniform convergence are Sidon sets, for which it is known that their density is quite small. More precisely, for Sidon sets \(\sigma \in \mathbb{Z} \), \(| \sigma \cap [-N, N] | \leq C \log N \), where \(C < \infty \) is a constant, \(N = 1, 2, \ldots \); sets of larger density of order \((\log N)^2 \) were constructed in [4], of order \((\log N)^k \), \(k \in \mathbb{N} \) in [5]. U. C. sets of greater density are not yet known.

The goal of the present note is to consider random subsets \(\sigma \subset \{-N, \ldots, N\} \) of the trigonometric system \(\{e^{2\pi inx}\}_{n=-N}^{N} \) or \(\sigma \subset \{1, \ldots, N\} \) for the Walsh system \(\{W_i\}_{i=1}^{2^r=N} \). In both cases estimates of the Lebesgue constant (i.e., the norm of the operators of partial sums) guarantee that \(U(\sigma) \leq C \log N \) for all \(\sigma \) and \(N \) and some constant \(C \).

It is shown in [6] (cf. also [7, p. 283]) that for any uniformly bounded orthonormal system \(\{\varphi_n\}_{n=1}^{N} \) a random set \(\sigma \subset \{1, \ldots, N\} \) with number of elements \(| \sigma | \leq (1/6) \log N \) is a Sidon set with Sidon constant independent of \(N \). Consequently, for a random set \(\sigma \) with \(| \sigma | \leq (1/6) \log N \) we have \(U(\sigma) \leq C \) with constant \(C \) independent of \(N \).

The basic result of this paper is that for a random subset \(\sigma \subset \{1, \ldots, N\} \) with number of elements \(\gg \log N \), \(U(\sigma) \to \infty \) as \(N \to \infty \) and in addition if the number of elements of the random set \(\sigma \) satisfies \(| \sigma | \geq N^\varepsilon \) for some \(\varepsilon > 0 \), then with high probability \(U(\sigma) \) has maximal order, i.e., \(\log N \).

First we consider the case of a Walsh system. For natural numbers \(q \) and \(N \) such that \(1 \leq q \leq N \), we denote by \(S_{N^q} \) the family of all sets \(\sigma \subset \{1, \ldots, N\} \) with \(| \sigma | = q \) and by \(\nu \) the normalized counting measure on \(S_{N^q} \). For \(\sigma \subset S_{N^q} \) let

\[
U(\sigma) = \sup \left\{ \left\| \sum_{j=1}^{s} a_j W_j \right\|_{\infty} : \left\| \sum_{j=1}^{N} a_j W_j \right\|_{\infty} = 1, \supp \{a_j\} \subset \sigma \right\}.
\]
THEOREM 1. There exists an absolute constant $c > 0$ such that if $N = 2^r$ for some natural number r and $1 < q \leq N/2$, then

$$\nu\{\sigma \in S_N^r : U(\sigma) \leq c \log \left(2 + \frac{q}{\log N} \right) \} < \frac{1}{N^2}.$$

Proof. When q is not very large compared with $\log N$ one can find a constant $c > 0$ such that

$$c \log \left(2 + \frac{q}{\log N} \right) < 1,$$

and hence the measure considered in the theorem is zero since $U(\sigma) \geq 1$ for any set σ. Hence we assume below that N is sufficiently large and $q \geq 20 \log N$.

Let $\delta = q/N$ and we note that $0 < \delta \leq 1/2$. Further, let $\{\xi_i\}_{i=1}^N$ be a collection of independent random variables defined on a probability space (Ω, Σ, μ) and assuming values 0 or 1 with mean δ. For $\omega \in \Omega$ let

$$\sigma(\omega) = \{i; 1 \leq i \leq N, \xi_i(\omega) = 1\}.$$

We show below that for some constant $c > 0$

$$\mu\{\omega \in \Omega; U(\sigma(\omega)) < c \log \left(2 + \frac{q}{\log N} \right) \} \leq \frac{5}{N^3}. \quad (*)$$

Thus we prove Theorem 1 since

$$\mu\{\omega \in \Omega; |\sigma(\omega)| = q = \delta N \} \geq \frac{B}{\sqrt{N}}$$

for some constant $B > 0$ that is independent of N and $(\frac{\mu}{N^3}) / (\frac{\mu}{N^2}) < \frac{1}{N^2}$ for N sufficiently large.

To prove (*) we need some auxiliary lemmas.

Lemma 1. Let $b = (b_1, b_2, \ldots, b_2^r)$ be a sequence such that for $s = 1, 2, \ldots, r - 1$ and some $\beta_0 > 0$ the set

$$\Delta_s = \left\{ k; \frac{1}{2^{s+1}} < |b_k| \leq \frac{1}{2^s} \right\}$$

has cardinality $|\Delta_s| \geq \beta_0 2^s$. Then for any sequence $a = (a_1, a_2, \ldots, a_{2^r})$ with $\|a\|_1 \leq \lambda$, for some $1 \leq \lambda \leq (r - 2)\beta_0 / 8$ one has

$$\|a - b\|_2 \geq 2^{-8\lambda/\beta_0 \sqrt{\beta_0}}.$$

Proof. We fix $a = (a_1, a_2, \ldots, a_{2^r})$ with $\|a\|_1 \leq \lambda$ and for each s let $\lambda_s = \Sigma_{k \in \Delta_s} |a_k|$. Since

$$\lambda \geq \Sigma_{s=1}^{(8\lambda/\beta_0)+1} \lambda_s \geq \frac{8\lambda}{\beta_0} \min_{1 \leq s \leq (8\lambda/\beta_0)+1} \lambda_s,$$

we can find a natural number $1 \leq s_0 \leq 8\lambda/\beta_0 + 1$ such that $\lambda_{s_0} \leq \beta_0 / 8$. Let

$$\Delta'_{s_0} = \left\{ k \in \Delta_{s_0}; |a_k| \geq \frac{1}{2^{s_0+2}} \right\}$$

and we note that

$$\beta_0 \geq \Sigma_{k \in \Delta'_{s_0}} |a_k| \geq \frac{|\Delta'_{s_0}|}{2^{s_0+2}},$$

i.e.,

$$|\Delta'_{s_0}| \leq \frac{\beta_0 2^{s_0+2}}{8} = \frac{\beta_0 2^{s_0}}{2}.$$

678
Consequently

\[||a - b||^2 \geq \sum_{k \in \Delta_{\alpha_0}} |a_k - b_k|^2 \geq \sum_{k \in \Delta_{\alpha_0} \Delta_{\alpha_0}} (|b_k| - |a_k|)^2 \geq \frac{|\Delta_{\alpha_0} \setminus \Delta_{\alpha_0}'|}{2^{2\alpha_0 + 4}} \geq \frac{\beta_0 2^{\alpha_0}}{2^{2\alpha_0 + 5}} = \frac{\beta_0}{32} \cdot \frac{1}{2^{2\alpha_0}}, \]

and we get

\[||a - b||_2 \geq \sqrt{\frac{\beta_0}{32} \cdot \frac{1}{2^{2\alpha_0}} \geq \frac{\beta_0}{8} \cdot \frac{1}{2^{2\alpha_0}}}. \]

Lemma 2. Let us assume that \(\{\varphi_i\}_{i=1}^m \) is a collection of elements of a Hilbert space \(H \) such that for some \(0 < \varepsilon < 1 \) and any vector \(c = (c_1, c_2, \ldots, c_m) \) one has

\[(1 - \varepsilon)||c||_2 \leq \sum_{i=1}^m c_i |\varphi_i| < (1 + \varepsilon)||c||_2. \]

Then

\[(1 - \varepsilon)^4 ||c||_2^2 \leq \sum_{k=1}^m \left(\sum_{i=1}^m c_i |\varphi_i, \varphi_k| \right)^2 \leq (1 + \varepsilon)^4 ||c||_2^2 \]

for the same \(\varepsilon > 0 \) and each \(c \in l^2_m \).

Proof. Our assumption implies that

\[(1 - \varepsilon)^2 ||c||_2^2 \leq \sum_{i,j=1}^m c_i c_j (|\varphi_i, \varphi_j| \leq (1 + \varepsilon)^2 ||c||_2^2 \]

for any \(c \in l^2_m \), i.e., the matrix \(G = \{ (\varphi_i, \varphi_j) \}_{i,j=1}^m \) is positive definite and its eigenvalues \((\lambda_1, \ldots, \lambda_m) \) satisfy the inequalities

\[(1 - \varepsilon)^2 \leq \lambda_i \leq (1 + \varepsilon)^2; \quad 1 \leq i \leq m. \]

Hence the eigenvalues of the matrix \(GG^* = G^2 \) lie between \((1 - \varepsilon)^4 \) and \((1 + \varepsilon)^4 \). In particular,

\[(1 - \varepsilon)^4 ||c||_2^2 \leq (c, GG^* c) \leq (1 + \varepsilon)^4 ||c||_2^2 \]

for any \(c \in l^2_m \). This finishes the proof since

\[\sum_{k=1}^m \left(\sum_{i=1}^m c_i |\varphi_i, \varphi_k| \right)^2 = \sum_{k=1}^m \sum_{i,j=1}^m c_i c_j (\varphi_i, \varphi_k)(\varphi_j, \varphi_k) = (c, GG^* c). \]

Lemma 3. Under the hypotheses of Lemma 2, for the element \(f = \sum_{i=1}^m c_i \varphi_i \) one has

\[\|f - \sum_{i=1}^m (f, \varphi_i) \varphi_i\| \leq 3 \sqrt{3} \left(\sum_{i=1}^m |(f, \varphi_i)|^2 \right)^{1/2}, \]

if \(\varepsilon \) is sufficiently small.

Proof. By Lemma 2

\[0 \leq \left\| f - \sum_{i=1}^m (f, \varphi_i) \varphi_i \right\|^2 = \|f\|^2 + \left\| \sum_{i=1}^m (f, \varphi_i) \varphi_i \right\|^2 - 2 \left(\sum_{i=1}^m |(f, \varphi_i)|^2 \right)^2 \]

\[\leq \|f\|^2 - (1 - \varepsilon)^4 ||c||_2^2 + (2 \varepsilon + \varepsilon^2) \sum_{i=1}^m |(f, \varphi_i)|^2 \leq \|(1 + \varepsilon)^2 - (1 - \varepsilon)^4 + (2 \varepsilon + \varepsilon^2) (1 + \varepsilon)^4 \| ||c||_2^2. \]

Hence, if \(\varepsilon \) is sufficiently small, we get

\[0 \leq \left\| f - \sum_{i=1}^m (f, \varphi_i) \varphi_i \right\|^2 \leq 8.5 \varepsilon ||c||_2^2 \leq 9 \varepsilon \sum_{i=1}^m |(f, \varphi_i)|^2. \]
LEMMA 4. There exists an $\varepsilon_0 > 0$ such that as soon as a collection $\{\varphi_i\}_{i=1}^m$ of elements of the Hilbert space H is given satisfying the condition

$$(1 - \varepsilon)\|c\|_2 \leq \left\| \sum_{i=1}^m c_i \varphi_i \right\|_H \leq (1 + \varepsilon)\|c\|_2,$$

for some $0 < \varepsilon < \varepsilon_0$ and any $c = (c_1, \ldots, c_m) \in l_2^m$, one has that for any $z \in H$ and any vector $c = (c_1, \ldots, c_m)$

$$\left\| z - \sum_{i=1}^m c_i \varphi_i \right\| \geq (1 - \varepsilon) \left[\sum_{i=1}^m ((z, \varphi_i) - c_i)^2 \right]^{1/2} - 3\sqrt{\varepsilon} \left(\sum_{i=1}^m ((z, \varphi_i)^2) \right)^{1/2}.$$

Proof. Let R be the orthogonal projection from H to $[\varphi_i]_{i=1}^m$. Then

$$\left\| z - \sum_{i=1}^m c_i \varphi_i \right\| \geq \left\| Rz - \sum_{i=1}^m c_i \varphi_i \right\|$$

and $(Rz, \varphi) = (z, \varphi)$, $1 \leq i \leq m$, i.e., it is enough to establish the inequality for Rz instead of z. In other words we can assume that $z \in L$. Then by our hypotheses and Lemma 3 we find that

$$\left\| z - \sum_{i=1}^m c_i \varphi_i \right\| \geq \left\| Rz - \sum_{i=1}^m c_i \varphi_i \right\| \geq (1 - \varepsilon) \left[\sum_{i=1}^m ((z, \varphi_i) - c_i)^2 \right]^{1/2} - 3\sqrt{\varepsilon} \left(\sum_{i=1}^m ((z, \varphi_i)^2) \right)^{1/2}.$$

To estimate $U(\sigma)$ we need

LEMMA 5. Let $\{W_j\}_{j=1}^{N=2^r}$ be the first N Walsh functions defined on $[0, 1]$, and let $\sigma \subset \{1, 2, \ldots, N\}$. Then

$$U(\sigma) = \max_{1 \leq p \leq N} \max_{z \in Z(\sigma)} |(v_p, z)|,$$

where $v_p = \underbrace{(1, 1, \ldots, 1, 0, \ldots, 0)}_{p \text{ times}}$ and

$$Z(\sigma) = \left\{ z = (z_1, \ldots, z_N) \in \mathbb{R}^N, \supp(z) \subset \sigma, \left\| \sum_{i=1}^N z_i W_i \right\|_\infty \leq 1 \right\}.$$

Proof. We fix $1 \leq p \leq N$ and $z \in Z(\sigma)$. Then for any $0 < \tau < 1/N$

$$|(v_p, z)| = \left| \sum_{j=1}^p z_j \right| = \left| \sum_{j=1}^p z_j W_j(\tau) \right| \leq \left\| \sum_{j=1}^p z_j W_j \right\|_\infty \leq U(\sigma).$$

To prove the opposite inequality we fix a function $f = \sum_{k=1}^N \hat{f}(k) W_k$ such that $\{\hat{f}(k)\} \subset \sigma$, $\|f\|_\infty = 1$ and for some $1 \leq p \leq N$ and $0 \leq \tau_0 \leq 1$ one has

$$U(\sigma) = \sum_{k=1}^p \hat{f}(k) W_k(\tau_0).$$

Let

$$g(x) = \sum_{k=1}^N \hat{f}(k) W_k(\tau_0) W_k(x), \quad x \in [0, 1],$$

and we note that $g(x) = \sum_{k=1}^N \hat{f}(k) W_k(x \oplus_\delta \tau_0)$, where $x \oplus_\delta \tau_0$ means addition of x and τ_0 modulo 2 (cf. [7, p. 135]). Hence

$$g(x) = f(x \oplus_\delta x_0)$$

and so $\|g\|_\infty \leq 1$. Consequently, $z^0 = \{\hat{f}(k) W_k(\tau_0)\}_{k=1}^N \in Z(\sigma)$ and thus

$$U(\sigma) = (v_p, z^0) \leq \max_{1 \leq p \leq N} \max_{z \in Z(\sigma)} |(v_p, z)|.$$
LEMMA 6. For $N = 2^r$ we consider the discrete Walsh system $W_i = (w_{i,j})_{j=1}^N$, $1 \leq i \leq n$, as a collection of vectors normalized in $l^\infty_\mathbb{N}$, i.e., such that $|w_{i,j}| = 1$ for all $1 \leq i, j \leq N$. In addition let $\{W^{(j)}\}_{j=1}^N$ be the columns of the Walsh matrix. Then for any $\sigma \subset \{1, 2, \ldots, N\}$

$$U(\sigma) = \inf \left\{ \lambda; \forall 1 \leq p \leq N, R_\sigma v_p = \sum_{j=1}^{N} \lambda_j R_\sigma W^{(j)} \quad \text{c} \quad \sum_{j=1}^{N} |\lambda_j| \leq \lambda \right\},$$

where $v_p = (1, \ldots, 1, 0, \ldots, 0)$ and R_σ is the orthogonal projection operator to $[e_i]_{i \in \sigma} \{e_i\}_{i=1}^N$ denotes the canonical basis in \mathbb{R}^N.

Proof. First we show that for any $1 \leq p \leq N$ and $\sigma \subset \{1, 2, \ldots, N\}$

$$R_\sigma v_p \in \text{conv}\{\pm U(\sigma) R_\sigma W^{(j)}; 1 \leq j \leq N\}.$$

Indeed if this conclusion failed for some $1 \leq p \leq N$, then the standard argument based on the property of separability of convex sets would imply the existence of a vector $b = (b_1, \ldots, b_N)$ such that $(b, R_\sigma v_p) > 1$, but $|b, U(\sigma) R_\sigma W^{(j)}| \leq 1$ for all $1 \leq j \leq N$. Then we set $z = U(\sigma) R_\sigma b$ and note that for the p considered $|z, v_p| > U(\sigma)$. On the other hand, $|z, W^{(j)}| \leq 1$ for all $1 \leq j \leq N$, i.e., $z \in Z(\sigma)$, which by Lemma 5 implies $|z, v_p| \leq U(\sigma)$, and we arrive at a contradiction.

As an immediate corollary we have

$$R_\sigma v_p = \sum_{j=1}^{N} \mu_j U(\sigma) R_\sigma W^{(j)},$$

for any $1 \leq p \leq N$ with $\Sigma_{j=1}^{N} |\mu_j| \leq 1$. Consequently,

$$\inf \left\{ \lambda; \forall 1 \leq p \leq N, R_\sigma v_p = \sum_{j=1}^{N} \lambda_j R_\sigma W^{(j)} \quad \text{c} \quad \sum_{j=1}^{N} |\lambda_j| \leq \lambda \right\} \leq U(\sigma).$$

On the other hand, if for some $1 \leq p \leq N$ we have that

$$R_\sigma v_p = \sum_{j=1}^{N} \lambda_j R_\sigma W^{(j)}$$

with $\Sigma_{j=1}^{N} |\lambda_j| \leq \lambda$, then for $z \in Z(\sigma)$

$$|(v_p, z)| = |(R_\sigma v_p, z)| = \sum_{j=1}^{N} \lambda_j (z, W^{(j)}) \leq \lambda \max_{1 \leq j \leq N} |(z, W^{(j)})| \leq \lambda,$$

i.e., $U(\sigma) \leq \lambda$.

For completeness of the exposition we also cite the following familiar probabilistic result.

LEMMA 7. Let $0 < \delta \leq 1/2$ and let $\{\xi_k\}_{k=1}^{N}$ be a collection of independent random variables defined on a probability space (Ω, Σ, μ) and assuming values 0 or 1 with mean δ. Then for any $|a_k| \leq 1$, $1 \leq k \leq N$, and $0 \leq \gamma \leq \delta N$ we have

$$\mu \left\{ \omega \in \Omega; \left| \sum_{k=1}^{N} a_k (\xi_k(\omega) - \delta) \right| \geq \gamma \right\} \leq 2e^{-\gamma^2/(\delta N)}.$$

Proof. We fix $1 \leq k \leq N$ and let $X_k(\omega) = \xi_k(\omega) - \delta$ and we note that for $0 \leq t \leq 1$

$$\int_{\Omega} e^{t X_k(\omega)} d\mu(\omega) = \int_{\Omega} \left[1 + t X_k(\omega) + \sum_{j=2}^{\infty} \frac{t^j}{j!} X_k^j(\omega) \right] d\mu(\omega)$$

$$\leq 1 + t^2 \int_{\Omega} X_k^2(\omega) d\mu(\omega) \sum_{j=2}^{\infty} \frac{1}{j!} = 1 + t^2 \delta(1 - \delta)(e - 2) \leq e^{t^2(1 - \delta)}.$$

In particular

$$\int_{\Omega} e^{t a_k X_k(\omega)} d\mu(\omega) \leq e^{t^2(1 - \delta)},$$

681
provided that $0 \leq t \leq 1$. Consequently, by Theorem 15 of [8, p. 52] we get that

$$\mu\left\{\omega \in \Omega; \sum_{k=1}^{N} a_k(\xi_k(\omega) - \delta) \geq \gamma\right\} \leq e^{-\gamma^2/(4\delta(1-\delta)N)} \leq e^{-\gamma^2/(4\delta N)}$$

provided $0 \leq \gamma \leq 2\delta(1-\delta)N$, and in particular if $0 \leq \gamma \leq \delta N$. Lemma 7 is proved.

Before proving Theorem 1 we note that for $1 \leq j \leq N$

$$|\{v_p, W^{(j)}\}| \leq \frac{N}{j} \quad \text{(i)}$$

for each $1 \leq p \leq N$, and if

$$p = \lfloor N/3 \rfloor \quad \text{and} \quad b_j = \frac{\{v_p, W^{(j)}\}}{N}, \quad 1 \leq j \leq N, \quad \text{(ii)}$$

then the cardinality of the set

$$\Delta_s = \left\{k; \frac{1}{2^{s + 1}} < |b_k| \leq \frac{1}{2^s}\right\}$$

satisfies $|\Delta_s| \geq 2^{s/4}$ for all $0 < s < \log_2 N$.

For $\sigma \subset \{1, 2, \ldots, N\}$ and $p = \lfloor N/3 \rfloor$ it follows from Lemma 6 that

$$R_{\sigma} v_p = \sum_{j=1}^{N} \nu_j^p(\sigma) R_{\sigma} W^{(j)},$$

where $\sum_{j=1}^{N} |\nu_j^p(\sigma)| \leq U(\sigma)$.

For fixed δ and N such that $\delta N \geq 20 \log N$, let

$$m = \left\lfloor \left(\frac{\delta N}{20 \log N}\right)^{3/8}\right\rfloor,$$

and we note here that

$$\|R_{\sigma} v_p - \sum_{j=1}^{m} \nu_j^p(\sigma) R_{\sigma} W^{(j)}\|_2^2 = \left(\sum_{h=m+1}^{N} \nu_h(\sigma) R_{\sigma} W^{(h)}, R_{\sigma} v_p - \sum_{j=1}^{m} \nu_j^p(\sigma) R_{\sigma} W^{(j)}\right)$$

$$\leq U(\sigma) \max_{m < h \leq N} |\{v_p, R_{\sigma} W^{(h)}\}| + U(\sigma)^2 \max_{1 \leq j \leq m} \|W^{(h)} - R_{\sigma} W^{(j)}\|.$$

To estimate the right side of the last inequality from above we first apply Lemma 7 for fixed h, $m < h \leq N$, and $0 \leq \gamma \leq \delta N$, and we get

$$\mu\left\{\omega \in \Omega; \left|\sum_{i=1}^{p} w_{i,h}(\xi_i(\omega) - \delta)\right| \geq \gamma\right\} \leq 2e^{-\gamma^2/(4\delta N)},$$

where $\{\xi_i\}_{i=1}^{N}$, as usual, are $(0, 1)$-valued independent random variables with mean δ for some $0 < \delta < 1$, defined on a probability space (Ω, Σ, μ). Consequently,

$$\mu\left\{\omega \in \Omega, \max_{m < h \leq N} \left|\sum_{i=1}^{p} w_{i,h}(\xi_i(\omega) - \delta)\right| \geq \gamma\right\} \leq 2Ne^{-\gamma^2/(4\delta N)},$$

and so with probability $\geq 1 - 2Ne^{-\gamma^2/(4\delta N)}$ we have

$$\max_{m < h \leq N} |(R_{\sigma} v_p, W^{(h)}) - \delta(v_p, W^{(h)})| \leq \gamma.$$

By remark (i) above
\[
\max_{m < h \leq N} |(R_{\sigma} v_p, W^{(h)})| \leq \frac{\delta N}{m} + \gamma
\]

with probability \(\geq 1 - 2Ne^{-\gamma^2/(4\delta N)}\).

Let \(\gamma = \sqrt{20\delta N \log N}\) and we note that \(0 < \gamma \leq \delta N\). Then for \(\varepsilon = (\delta N/20 \log N)^{-1/16}\) one has

\[
m = \left\lceil \frac{\varepsilon^2}{\sqrt{20 \log N}} \right\rceil,
\]

using which, we easily derive that

\[
\max_{m < h \leq N} |(R_{\sigma} v_p, W^{(h)})| \leq \left(1 + \frac{1}{\varepsilon^2}\right) \sqrt{20\delta N \log N} \leq \frac{2}{\varepsilon^2} \sqrt{20\delta N \log N}
\]

with probability \(\geq 1 - 2/N^4\).

An analogous calculation using Lemma 7 and the orthogonality of the Walsh matrix shows that

\[
\mu\left\{ \omega \in \Omega; \left| \sum_{i=1}^{N} w_{i,h} w_{i,j} \xi_i(\omega) \right| \geq \gamma \right\} \leq 2e^{-\gamma^2/(4\delta N)}
\]

for any \(0 < \gamma \leq \delta N\), \(m < h \leq N\), and \(1 \leq j \leq m\). Hence with probability \(\geq 1 - 2/N^3\) we have

\[
\max_{1 \leq j \leq m, m < h \leq N} |(W^{(h)}, R_{\sigma} W^{(j)})| \leq \sqrt{20\delta N \log N}.
\]

In sum we get that

\[
\|R_{\sigma} v_p - \sum_{j=1}^{m} \nu_j^{(p)}(\sigma) R_{\sigma} W^{(j)}\|_2^2 \leq \frac{2}{\varepsilon^2} U(\sigma) \sqrt{20\delta N \log N} + U(\sigma)^2 \sqrt{20\delta N \log N}
\]

\[
\leq \left(\frac{2}{\varepsilon^2} + U(\sigma)\right) U(\sigma) \sqrt{20\delta N \log N}
\]

with probability \(\geq 1 - 4/N^3\).

To estimate the left side of the last inequality from below we set

\[
\varphi_j = \frac{R_{\sigma} W^{(j)}}{\sqrt{\delta N}}; \quad 1 \leq j \leq m,
\]

and we note that arguing as above we get

\[
\mu\left\{ \omega \in \Omega; \left| \sum_{i=1}^{N} w_{i,j} w_{i,l} (\xi_i(\omega) - \delta) \right| \geq \gamma \right\} \leq 2e^{-\gamma^2/(4\delta N)}
\]

for any \(1 \leq j, l \leq m\). This implies that with probability \(\geq 1 - 2/N^3\)

\[
|(R_{\sigma} W^{(j)}, R_{\sigma} W^{(l)}) - \delta(W^{(j)}, W^{(l)})| \leq \sqrt{20\delta N \log N}, \quad 1 \leq j, l \leq m.
\]

Hence, with the same probability \(\geq 1 - 2/N^3\)

\[
|\langle \varphi_j, \varphi_l \rangle - \langle W^{(j)}, W^{(l)} \rangle| \leq \sqrt{\frac{20 \log N}{\delta N}}, \quad 1 \leq j, l \leq m.
\]

Hence for each vector \(c = (c_j)_{j=1}^{m}\)
\[
\left\| \sum_{j=1}^{m} c_j \varphi_j \right\|^2 - \|c\|^2 \leq \sum_{j,i=1}^{m} |c_j||c_i| |(\varphi_j, \varphi_i) - \left(\frac{W(j)}{\sqrt{N}}, \frac{W(i)}{\sqrt{N}} \right)| \leq \left(\sum_{j=1}^{m} |c_j|^2 \right)^2 \sqrt{\frac{20 \log N}{\delta N}} \leq m\|c\|^2 \sqrt{\frac{20 \log N}{\delta N}} \leq \varepsilon^2 \|c\|^2 ,
\]
i.e.,

\[
(1-\varepsilon)\|c\| \leq \left\| \sum_{j=1}^{m} c_j \varphi_j \right\| \leq (1+\varepsilon)\|c\| ,
\]

Consequently, using Lemma 4 applied when \(z = R_v v_p / \sqrt{\delta N} \) and \(c_j = v_j^p(\sigma), \ 1 \leq j \leq m \), we get that

\[
\left\| \frac{R_v v_p}{\sqrt{\delta N}} - \sum_{j=1}^{m} v_j^p(\sigma) \frac{R_v W(j)}{\sqrt{\delta N}} \right\|_2 \geq (1-\varepsilon)\left(\sum_{j=1}^{m} \left| \left(\frac{R_v v_p}{\sqrt{\delta N}}, \frac{W(j)}{\sqrt{\delta N}} \right) - v_j^p(\sigma) \right|^2 \right)^{1/2}
\]

\[
= 3\sqrt{\varepsilon} \left(\sum_{j=1}^{m} \left| \left(\frac{R_v v_p}{\sqrt{\delta N}}, \frac{R_v W(j)}{\sqrt{\delta N}} \right) \right|^2 \right)^{1/2} ,
\]
i.e.,

\[
\left\| \frac{R_v v_p}{\sqrt{\delta N}} - \sum_{j=1}^{m} v_j^p(\sigma) R_v W(j) \right\|_2 \geq (1-\varepsilon)\sqrt{\delta N} \left(\sum_{j=1}^{m} \left| \left(\frac{R_v v_p}{\sqrt{\delta N}}, \frac{W(j)}{\sqrt{\delta N}} \right) - v_j^p(\sigma) \right|^2 \right)^{1/2}
\]

\[
= 3\sqrt{\varepsilon} \left(\sum_{j=1}^{m} \left| \left(\frac{R_v v_p}{\sqrt{\delta N}}, \frac{R_v W(j)}{\sqrt{\delta N}} \right) \right|^2 \right)^{1/2} .
\]

Previously we made the assumption that \(q(\log N)^{-1} = \delta N(\log N)^{-1} \) is large enough (or equivalently that \(\varepsilon \) is small enough) that we can use Lemma 4. Repeating calculations made earlier we conclude that

\[
|\langle v_p, R_v W(j) \rangle - \delta(v_p, W(j))| \leq \sqrt{20 \delta N \log N} \quad 1 \leq j \leq m ,
\]

with probability \(\geq 1 - 2/N^4 \). This implies that

\[
\left\| \frac{R_v v_p}{\sqrt{\delta N}} - \sum_{j=1}^{m} v_j^p(\sigma) R_v W(j) \right\| \geq (1-\varepsilon)\sqrt{\delta N} \left(\sum_{j=1}^{m} \left| \left(\frac{v_p}{\sqrt{N}}, \frac{W(j)}{\sqrt{N}} \right) - v_j^p(\sigma) \right|^2 \right)^{1/2}
\]

\[
= (1-\varepsilon)\sqrt{\delta N} m^{1/2} \sqrt{\frac{20 \log N}{\delta N}} - \frac{3\sqrt{\varepsilon}}{\sqrt{\delta N}} \left(\sum_{j=1}^{m} |\langle v_p, W(j) \rangle|^2 \right)^{1/2}
\]

\[
= 3\sqrt{\varepsilon} \left(\sum_{j=1}^{m} \left| \left(\frac{v_p}{\sqrt{N}}, \frac{W(j)}{\sqrt{N}} \right) \right|^2 \right)^{1/2} - \frac{3\sqrt{\varepsilon}}{\sqrt{\delta N}} \left(\sum_{j=1}^{m} |\langle v_p, W(j) \rangle|^2 \right)^{1/2}
\]

\[
\geq (1-\varepsilon)\sqrt{\delta N} \left(\sum_{j=1}^{m} \left| \left(\frac{v_p}{\sqrt{N}}, \frac{W(j)}{\sqrt{N}} \right) - v_j^p(\sigma) \right|^2 \right)^{1/2}
\]

\[
= 3\sqrt{\varepsilon} \left(\sum_{j=1}^{m} \left| \left(\frac{v_p}{\sqrt{N}}, \frac{W(j)}{\sqrt{N}} \right) \right|^2 \right)^{1/2} - (1-\varepsilon)\varepsilon^2 (20 \delta N \log N)^{1/4} - 3\varepsilon^{3/2} (20 \delta N \log N)^{1/4} .
\]
By remark (ii) above and Lemma 1,
\[\left(\sum_{j=1}^{m} \left(\frac{v_{p}}{\sqrt{N}} - \frac{W(j)}{\sqrt{N}} \right) \right)^{1/2} \geq \frac{1}{16} \left[\frac{1}{216U(\sigma)} - \frac{1}{N^{1/3}} \right] \]
provided that \(U(\sigma) \leq (r - 2)/32 \), which lets us use Lemma 1. Now if \(U(\sigma) > (r - 2)/32 \), then the last inequality obviously holds since the right side becomes negative. In addition, by Bessel's inequality,
\[\left(\sum_{j=1}^{m} (v_{p}, W(j))^2 \right)^{1/2} \leq N. \]
Hence with probability \(\geq 1 - 5/N^3 \)
\[\left(\frac{2}{\varepsilon^2} + U(\sigma) \right) (20\delta N \log N)^{1/4} \geq \left(\frac{2}{\varepsilon^2} + U(\sigma) \right)^{1/2} U(\sigma)^{1/2} (20\delta N \log N)^{1/4} \]
\[\geq \frac{(1 - \varepsilon)(\delta N)^{1/2}}{16 \cdot 2^{16}U(\sigma)} - 3(\varepsilon \delta N)^{1/2} - 4\varepsilon (20\delta N \log N)^{1/4} \]
\[\geq \frac{(\delta N)^{1/2}}{30 \cdot 2^{16}U(\sigma)} - 4(\varepsilon \delta N)^{1/2}. \]
To finish the proof of (*) and hence of Theorem 1 it is enough to verify that the inequalities given above imply that
\[U(\sigma) \geq c \log \left(\frac{\delta N}{\log N} \right) \]
for some absolute positive constant \(c \). Indeed if \(\frac{1}{30 \cdot 2^{16}U(\sigma)} \leq 10\varepsilon^{1/2} \), then \(30 \cdot 2^{16}U(\sigma) \geq \frac{1}{10} \left(\frac{\delta N}{20 \log N} \right)^{1/32} \), i.e.,
\[\log 30 + 16U(\sigma) \log 2 \geq \frac{1}{32} \log \left(\frac{\delta N}{20 \log N} \right) - \log 10. \]
Consequently,
\[U(\sigma) \geq c \log \left(\frac{\delta N}{\log N} \right), \]
where \(c > 0 \) is an absolute constant. On the other hand, if \(\frac{1}{30 \cdot 2^{16}U(\sigma)} \geq 10\varepsilon^{1/2} \), then since
\[\frac{2}{\varepsilon^2} = 2 \left(\frac{\delta N}{20 \log N} \right)^{1/8} \gg U(\sigma), \]
we get that
\[3 \cdot \left(\frac{\delta N}{20 \log N} \right)^{1/8} (20\delta N \log N)^{1/4} \geq \frac{(\delta N)^{1/2}}{60 \cdot 2^{16}U(\sigma)} \]
or
\[180 \cdot 2^{16}U(\sigma) \geq \left(\frac{\delta N}{20 \log N} \right)^{1/8}, \]
i.e., again
\[U(\sigma) \geq c \log \left(\frac{\delta N}{\log N} \right). \]
Now we consider the case of a trigonometric system. For \(U(\sigma) \) defined at the beginning of the paper one has an estimate analogous to Theorem 1.

THEOREM 2. There exists an absolute constant \(b > 0 \) such that for \(N = 2, 3, \ldots \) and \(1 \leq q \leq N \)

\[
\nu\left\{ \sigma \in S_{2N+1}^q; U(\{\sigma - N - 1\}) \leq b \log \left(2 + \frac{q}{\log N} \right) \right\} < \frac{1}{N^2}.
\]

We have used the usual notation above: the set

\[
\sigma - N - 1 = \{ k - N - 1; \ k \in \sigma \}
\]

is a subset of the set

\[
\{-N, -N+1, \ldots, -1, 0, 1, \ldots, N-1, N\}.
\]

Proof of Theorem 2. The first step in the proof of Theorem 2 is to consider for given \(N \) the discrete trigonometric system

\[
\varphi_k = \left\{ \varphi_{k,j} = e^{2\pi i k j / (2N+1)} \right\}_{j=0}^{2N} \in \mathbb{C}^{2N+1}, \quad -N \leq k \leq N.
\]

As in the previous case we denote by \(\varphi^{(0)}_0, 0 \leq j \leq 2N \), the columns of the matrix \(\{ \varphi_{k,j} \}_{k=-N}^{N, j=0} \).

Repeating the proof of Theorem 1 for the system \(\{ \varphi_k \}_{k=-N}^{N} \) in place of the Walsh system \(\{ W_k \}_{k=1}^{N} \) and for \(p = \lfloor N/2 \rfloor \) instead of \(p = \lfloor N/3 \rfloor \), we find that \(\nu(A) \geq 1 - 1/N^2 \), where \(A \) is the set of all subsets \(\sigma \subset S_{2N+1}^q \) for which one can find a sequence \(\sigma^a = (a_k^a)_{k=-N}^{N} \) with support in \(\sigma - N - 1 \) such that

\[
\left\| \sum_{k=-N}^{N} a_k^a \varphi_k \right\|_{\infty} = 1 \quad \text{and} \quad \left\| \sum_{k=-p}^{p} a_k^a \varphi_k \right\|_{\infty} \geq c \log \left(2 + \frac{q}{\log N} \right),
\]

where \(c > 0 \) is an absolute constant. Here, in contrast with the Walsh system, we consider the symmetric vectors

\[
v_p = (0, 0, \ldots, 0, 1, \ldots, 1, 0, 0, \ldots, 0) \in \mathbb{R}^{2N+1},
\]

which obviously satisfy the relation

\[(v_p, \varphi^{(j)}) = D_p(2\pi j / (2N + 1))\]

for all \(0 \leq j \leq 2N \), where \(D_p \) denotes the usual complex Dirichlet kernel.

To derive Theorem 2 from the discrete case analyzed above, for any \(\sigma \in A \) we consider the polynomial \(T^a(x) = \sum_{k=-N}^{N} a_k^a e^{2\pi i k x} \) and its de la Vallee Poussin mean:

\[
T^a(x) = \frac{1}{p} \sum_{n=p}^{2p-1} \sum_{k=-n}^{n} a_k^a e^{2\pi i k x}.
\]

Then, using standard properties of the de la Vallee Poussin kernel, we easily get that \(\left\| T^a \right\|_{\infty} \leq 10 \). On the other hand,

\[
\left\| \sum_{k=-p}^{p} \tilde{T}^a(n) e^{2\pi i k x} \right\|_{\infty} = \left\| \sum_{k=-p}^{p} a_k^a e^{2\pi i k x} \right\|_{\infty} \geq \left\| \sum_{k=-p}^{p} a_k^a \varphi_k \right\|_{\infty} \geq c \log \left(2 + \frac{q}{\log N} \right).
\]

Consequently, for any \(\sigma \in A \)

\[
U(\sigma) \geq \frac{c}{10} \log \left(2 + \frac{q}{\log N} \right).
\]

Remark. The approach used in the proof of Theorem 1 can also be applied for other orthogonal systems. In particular, without changing the proof for each permutation of a discrete trigonometric system.
REFERENCES

