ON A PROPERTY OF FUNCTIONAL SERIES

B. S. Kashin

The question of the convergence of functional series everywhere in the segment [0, 1] is considered. Let $F = \{f\}$ be the set of such functions in [0, 1] for each of which there is a transposition of the series $\sum_{k=1}^{\infty} f_k(x)$, which converges to it everywhere in [0, 1]. An example of a series is constructed such that the set F consists just of an identical zero, but $\sum_{k=1}^{\infty} |f_k(x)| = \infty$ for any point of the segment [0, 1].

Let be given the number series

$$\sum_{n=1}^{\infty} a_n. \quad (1)$$

Let A denote the set of all those numbers a for each of which there is a transposition $\tau = \{n_k\} = (n_1, n_2, \ldots, n_k, \ldots)$ of the natural number series such that

$$a = \sum_{k=1}^{\infty} a_{n_k} = \sum_{i} a_i. \quad \text{(2)}$$

It is well known that if the set A consists of one point, then the series (1) is absolutely convergent. This results directly from the Riemann theorem. This fact also holds for series of the form (1) with elements a_n from N-space [Steinitz-Levy theorem (see [1, 2])].

An analogous question is investigated herein for the case when $a_n = a_n(x)$ are continuous functions in the segment [0, 1]. More accurately, let the functions $f_n(x) \in C(0, 1)$ and $F = \{f(x)\}$ be a set of all those functions $f(x)$ defined in [0, 1] for each of which there is a transposition $\tau = \{n_k\}$ such that the series

$$\sum_{k=1}^{\infty} f_{n_k}(x) = \sum_{i} f_i(x) \quad \text{(3)}$$

converges at each point $x \in [0, 1]$ to $f(x)$.

Could it be asserted that if the set $F = \{f(x)\}$ consists of just one function then the series (2) will converge absolutely to some points of the segment [0, 1]? The answer to this question is given by the following

THEOREM. There exists a series

$$\sum_{n=1}^{\infty} f_n(x) \quad (x \in [0, 1]; \quad f_n(x) \in C(0, 1); \quad n = 1, 2, \ldots) \quad \text{(4)}$$

such that the set F consists of one function $f(x) \equiv 0$ and at the same time

$$\sum_{n=1}^{\infty} |f_n(x)| = \infty \quad \text{for all} \quad x \in [0, 1]. \quad \text{(5)}$$

© 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for $15.00.
Proof. Let A be the set of all transpositions $\tau = \{n_k\}$ of the natural number series such that
\[n_k \leq 27k^3 \quad \text{for} \quad k = 1, 2, \ldots. \tag{5} \]
Let us map the set A in the segment $[0, 1]$ according to the rule
\[x = \varphi(\tau) = 0, \frac{01}{n_1} \ldots \frac{01}{n_2} \ldots \frac{01}{n_3} \ldots \frac{01}{n_4} \ldots, \]
where the decimal fraction written out yields the number $x \in [0, 1]$. Let $B = \varphi(A)$ and \overline{B} be the closure of the set B. It is easy to see that if $x \in \overline{B}$, then
\[x = 0, 00 \ldots 011 \ldots 100 \ldots 011 \ldots 1 \ldots, \tag{6} \]
where $p_i \leq 27i^3$ ($i = 1, 2, \ldots$) and $p_j \neq p_k$ for $j \neq k$. Let us note that the sequence $\{p_i\}$ is not generally a transposition of the natural number series since some natural numbers may be missing in the set of numbers p_i ($i = 1, 2, \ldots$).

Let us define the sequence of functions $\{\varphi_n(x)\}_{n=1}^{\infty}$ in the set \overline{B}. Let $x \in \overline{B}$; then x is represented as the decimal fraction (6). Let us put
\[\varphi_{n+1}(x) = \frac{1}{3^n} \quad \varphi_n(x) = -\frac{1}{3^n} \quad (j = 1, 2, \ldots). \tag{7} \]
It is clear that the function $\varphi_n(x)$ retains its sign in the set \overline{B}. Moreover, the functions $\varphi_n(x)$ are continuous in the set \overline{B} for any $n = 1, 2, \ldots$. This results from the fact that if j is a fixed integer, and $x_0 \in \overline{B}$, then there is a $\delta > 0$ such that the functions $\varphi_{2j}(x)$ and $\varphi_{2j+1}(x)$ are constant in the set $\overline{B} \cap (x_0 - \delta, x_0 + \delta)$.

Let us note first that for any point $x \in \overline{B}$ we will have [see (5)-(7)]
\[\sum_{n=1}^{\infty} |\varphi_n(x)| = \infty \quad \text{for} \quad x \in \overline{B}, \tag{8} \]
and hence
\[\sum_{n=1}^{\infty} \varphi_n(x) = 0 \quad \text{for} \quad x \in \overline{B}. \tag{9} \]
Furthermore, $\sum_{n=1}^{2k} \varphi_n(x) = 0$ for $x \in \overline{B}$ and $k = 1, 2, \ldots$, but $\lim_{n \to \infty} \varphi_n(x) = 0$ for $x \in \overline{B}$ [see (7)]. Hence, the series
\[\sum_{n=1}^{\infty} \varphi_n(x) \tag{10} \]
converges in the set \overline{B} to the function $\varphi(x) = 0$. Let us note that besides the functions $\varphi_n(x)$, the function $\varphi(x)$ which is unique for each φ_n is also a member of the series (9).

We now prove that if the series (9) converges after some transposition $\tau' = \{m_i\}$ to some function $\Phi(x)$ everywhere in \overline{B}, then $\Phi(x) = \varphi(x) = 0$ for $x \in \overline{B}$, i.e.,
\[\Phi(x) = \sum_{i=1}^{\infty} \varphi_{m_i}(x) = \sum_{i=1}^{\infty} \varphi_n(x) = 0. \tag{10} \]

Let us take an arbitrary natural number N and let us call the function $\varphi_{j}(x)$ contracted into the section from 1 to N in the transposition τ', if among the functions $\{\varphi_{m_1}(x)\}_{i=1}^{N}$ there is both the function $\varphi_{j}(x)$ and the function $\varphi_{j+1}(x)$. Let $K(\tau', N)$ denote the number of functions not reduced in the transposition τ' in the section from 1 to N.

Let us consider the series
\[\sum_{i=1}^{\infty} \varphi_{m_i}(x_0) = \sum_{i} \varphi_{n}(x_0) \tag{11} \]
at an arbitrary point \(x_0 \in \overline{B} \). Let us call the number \(a_j = \varphi_{m_j}(x_0) \) reduced in the section from 1 to N in the cross \(\tau' \) if among the numbers \(\{a_{m_j}\}_{j=1}^{N} \) there are both the numbers \(a_j \) and \(-a_j\). Let \(K(x_0, \tau', N) \) denote the number of terms in the series (11) not reduced in the section from 1 to N.

Let us note that when the point \(x_0 \in \overline{B} \) [see (6)], then \(p_i \neq p_j \) for \(i \neq j \), and hence, if \(\varphi_n(x_0) = \varphi_m(x_0) \), then \(n = m \). Consequently, for any \(x_0 \in \overline{B}, \tau', \) and N the function \(K(x_0, \tau', N) = K(\tau', N) \), and the functions \(\varphi_{m_j}(x) \) not being reduced on the section from 1 to N in the series (10), are at the same places as the terms \(\{a_{m_j}\} \) of the series (11) not being reduced in the same section.

For a given transposition \(\tau' = \{m_j\} \) [see (10)] two cases are possible:

I. \(\lim_{N \to \infty} K(\tau', N) < \infty \)

II. \(\lim_{N \to \infty} K(\tau', N) = \infty \).

Members of the series (11) tend to zero, and moreover, for each member \(\varphi_{m_j}(x_0) \) of the series (11) there is a member \(\varphi_{m_j}(x_0) = -\varphi_{m_j}(x_0) \) of the same series. Hence, in case I, i.e., when \(K(\tau', N) \leq M = \text{const} \) for all \(N = 1, 2, \ldots \), in the partial sum

\[
\sigma_N(x_0) = \sum_{i=1}^{N} \varphi_{m_j}(x_0)
\]

the terms not being reduced (\(\leq M \) in quantity) have an arbitrarily large number as \(N \to \infty \). This means that \(\sigma_N(x_0) \to 0 \) as \(N \to \infty \). Therefore, the series (11) converges to zero at each point \(x_0 \in \overline{B} \), i.e., \(\Phi(x) = \varphi(x) \) and (10) is valid in case I.

Now, let us analyze case II. We prove that it is impossible. For this case we construct the divergent series

\[
\sum_{i=1}^\infty s_i, \quad (12)
\]

which is a transposition of the series

\[
\sum_{i=1}^\infty \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right) \quad (13)
\]

and for which \(s_i = \varphi_{m_j}(x_i) \) (\(i = 1, 2, \ldots \)) at some point \(x_i \in \overline{B} \). This fact will contradict the convergence of the series (10) to the function \(\Phi(x) \) in the set \(\overline{B} \). Let us select two partial series from the series (13)

\[
T_1 = \sum_{k=1}^\infty \left(\frac{1}{\sqrt{2k}} - \frac{1}{\sqrt{2k+1}} \right), \quad T_2 = \sum_{k=1}^\infty \left(\frac{1}{\sqrt{2k-1}} - \frac{1}{\sqrt{2k+1}} \right).
\]

The remaining terms in (13) form some partial series which we denote by

\[
T_3 = \sum_{k=1}^\infty \left(\frac{1}{\sqrt{2k} - \sqrt{2k+1}} \right) \quad (14)
\]

It is clear that \(r_i \geq 3i \) (\(i \geq 1 \)). We construct the series (12) by induction.

First Step in the Induction. Let us select a natural number \(p_1 \) such that

\[
\sum_{k=1}^{p_1} \frac{1}{\sqrt{2k}} > 2 \sqrt{p_1}. \quad (15)
\]

After this, let us find the natural number \(N_1 \) such that

\[
K(\tau', N_1) > 2p_1 \quad (16)
\]

and the partial sum of the series (10)

\[
\sigma_{N_1}(x) = \sum_{i=1}^{N_1} \varphi_{m_j}(x) \quad (17)
\]
contains all functions \{\varphi_n(x)\}_{n=1}^{2p_1} (which are naturally reduced). Let \(\alpha^+(\tau', N)\) [or \(\alpha^- (\tau', N)\)] denote the number of positive (or negative) terms from 1 to N not reduced in the series (10). By virtue of (16), either \(\alpha_1 = \alpha^+(\tau', N) > p_1\), or \(\alpha_1 = \alpha^- (\tau', N) > p_1\). Without limiting the generality (this will be seen from the reasoning below), we can consider that

\[\alpha_1 > p_1.\]

(18)

Two cases are possible: a) \(\beta_1 < p_1\), b) \(\beta_1 \geq p_1\). In case a) we set terms of the series \(T_1\) successively in the first \(p_1\) places of the positive functions not being reduced in (17):

\[\frac{1}{\sqrt{2 \cdot 1}}, \frac{1}{\sqrt{2 \cdot 2}}, \ldots, \frac{1}{\sqrt{2 \cdot p_1}},\]

i.e., if \(\varphi_{m_{1q}}(x) (1 < i_2 < \ldots < i_{\alpha_1})\) are positive functions not being reduced in the partial sum (17), then, [see (18)]

\[s_{m_{1q}} = \frac{1}{\sqrt{2 \cdot q}} \quad \text{for} \quad 1 \leq q \leq p_1.\]

Analogously, we successively set members of the series \(T_2\) in the \(\beta_1\) places of the negative functions not reduced in (17):

\[-\frac{1}{2 \cdot 1 + 1}, -\frac{1}{2 \cdot 2 + 1}, \ldots, -\frac{1}{2 \cdot \beta_1 + 1}.\]

Furthermore, we set terms from the series \(T_3\) successively at the places of the functions \(\varphi_{m_{1q}}(x)\) with \(p_1 < q < 2p_1 - \beta_1:\)

\[\frac{1}{2(\beta_1 + 4) + 1}, \ldots, \frac{1}{2p_1 + 1}.\]

Therefore, we have determined \(s_i\) for some values of \(i (1 \leq i \leq N_1)\) within the quantity \(p_1 + \beta_1 + (p_1 - \beta_1) = 2p_1\). We set members of the series \(T_3\) at the places of the functions \(\varphi_{m_{1q}}(x)\) with \(2p_1 - \beta_1 < q \leq \alpha_1\) and at the places of all the functions reduced in (16) so that:

1) If there are functions \(\varphi_{2j-4}(x)\) and \(-\varphi_{2j-4}(x) = \varphi_{2j}(x)\) at any two places in (17), then we put \((1/\sqrt{\tau})\) and \(-1/(\sqrt{\tau})\), respectively, at these places;

2) At the place of the functions \(\varphi_{m_{1q}}(x) = \varphi_{2j-1}(x)\) with \(2p_1 - \beta_1 < q < \alpha_1\), we put \((1/\sqrt{\tau})\);

3) If the first member of the series \(T_3\) unused in 1) and 2) has the number \(i_0 \leq p_1\), then at the place of the function \(\varphi_{m_{\alpha_1}}(x) = \varphi_{2j-1}(x)\), we put \((1/\sqrt{\tau})\). If \(i_0 > p_1\), then at the place of \(\varphi_{m_{\alpha_1}}(x) = \varphi_{2j-1}(x)\), we put \(1/(\sqrt{\tau})\) as in 2).

We have therefore constructed \(s_i\) for all \(1 \leq i \leq N_1\). The numbers \(s_i (1 \leq i \leq N_1)\) have been constructed so that if the number \(s_i = (1/\sqrt{\tau})\) [or \(-1/(\sqrt{\tau})\)] has been compared to the functions \(\varphi_{m_1}(x) = \varphi_{2h-1}(x)\) or \(\varphi_{m_2}(x) = \varphi_{2h}(x)\), then [see (14) and the choice of \(N_1\)]

\[l \leq 27 \cdot h^3.\]

(19)

Let us note that [see (15)]

\[A_1 = \sum_{i=1}^{N_1} s_i > \sum_{i=1}^{N_1} \frac{1}{\sqrt{2j}} - \sum_{i=1}^{N_1} \frac{1}{\sqrt{2j+4}} = R_1 > \sqrt{p_1}.\]

(20)

In case b), i.e., when \(\beta_1 \geq p_1\), we construct \(s_i\) as follows. We put the number \((1/\sqrt{2 \cdot q})\) successively for \(1 \leq q \leq p_1\) [or \(-1/(2q + 1)\) for \(1 \leq q \leq p_1\)] at the first \(p_1\) places of the positive (or negative) functions not reduced in (17).

We put members of the series \(T_3\) at the remaining places in (17) exactly as in sections 1), 2), and 3) case a).
Let $s^{(1)}_i$ denote the numbers thus constructed for $1 \leq i \leq N_1$. If we alter the construction just so that we put successively the number $1/(2q+1)$ with $1 \leq q \leq p_1$ (or $-1/(2q+1)$ with $1 \leq q \leq p_1$) in the first p_1 places of the positive (or negative) functions not reduced in (17), then we obtain the number $s^{(2)}_i$ with $1 \leq i \leq N_1$. But then, [see (20)]

$$\left| \sum_{i=1}^{N_1} s^{(2)}_i - \sum_{i=1}^{N_1} s^{(1)}_i \right| = 2R_1,$$

and hence, we have for $\alpha = 1$ (or for $\alpha = 2$)

$$\left| \sum_{i=1}^{N_1} s^{(\alpha)}_i \right| \geq R_1. \quad (21)$$

Let us put $s_1 = s^{(\alpha)}_i$ for $1 \leq i \leq N_1$ and that α for which (21) is valid. We have constructed s_1 ($1 \leq i \leq N_1$) as in both case a) and case b) so that (19) is valid and $|A_1| > \sqrt{p_1}$. The first step in the induction is thereby terminated.

Second Step in the Induction. For integer $n \geq 2$ let us have constructed p_n, N_{n-1}, and s_i for $1 \leq i \leq N_{n-1}$. Let us select p_n such that

$$\sum_{x=p_{n-1}+1}^{p_n} \frac{1}{\sqrt{2k}} > 2\sqrt{p_n},$$

and let us find the natural number N_n such that $K(\tau', N_0) > 2p_n$, and the partial sum

$$s_{N_n}(x) = \sum_{i=1}^{N_n} q_{s_i}(x) \quad (22)$$

contains all functions $\{\varphi_1(x)\}_{i=1}^{2p_n}$ and $\{\varphi_{m_1}(x)\}_{i=1}^{N_{n-1}}$ which have been reduced in (22). We will construct the s_i with $N_{n-1} < i \leq N_n$ almost exactly as in the first step of the induction, with the sole exception that if the number s_i ($1 \leq i \leq N_{n-1}$) has been compared to the function $f_{m_1}(x)$ in the partial sum $s_{N_{n-1}}(x)$, then we compare the number $-s_i$ to the function $-f_{m_1}(x)$ in the second step.

The sequence $\{s_i\}_{i=1}^\infty$ thus constructed satisfies the following conditions:

1°) the sum is $\left| \sum_{i=1}^{N_n} s_i \right| > \sqrt{p_n}$;

2°) if the number $s_1 = (1/\sqrt{7})$ has been compared to the function $\varphi_{m_1}(x) = \varphi_{m_2}(x)$ ($1 \leq i < \infty$), then $i < 27 n^2$;

3°) if the number s_i has been compared to the function $f_{m_1}(x)$, then the number $s_j = -s_i$ is compared to the function $-f_{m_1}(x)$;

4°) the sequence $\{s_i\}_{i=1}^\infty$ is some transposition of the sequence $\{\frac{1}{\sqrt{m}}, -\frac{1}{\sqrt{m}}\}_{m=1}^\infty$.

Let us show that there exists a point $x_l \in B$, for which

$q_{m_1}(x_l) = s_1 \quad (1 \leq i < \infty)$.\]

Indeed, by construction a number $s_{l_k} = (1/\sqrt{n_k})$, i.e.,

$q_{m_1}(x) \Rightarrow \frac{1}{\sqrt{n_k}} \quad (1 \leq k < \infty),$

and

$q_{m_{l_k}}(x) \Rightarrow q_{m_1}(x) \Rightarrow -\frac{1}{\sqrt{n_k}}, \quad (23)$

where the sign \Rightarrow denotes comparison, has been compared to each positive function $\varphi_{m_1}(x) = \varphi_{m_{l_k}}(x)$ from the series (10). Let us take the point

298
By virtue of \(2^\circ \) and \(4^\circ \) the point \(x_1 \in \mathbb{B} \), because \(n_k \leq 27 k^2 \) and \(\{n_k\}_{k=1}^\infty \) are the transposition of a natural series. But then [see (7) and \(3^\circ \)]

\[
q_{m_i}(x_i) \equiv q_{2i-1}(x_i) = \frac{1}{\sqrt{n_i}} = s_i
\]

Hence [see \(1^\circ \), (23), and (24)]

\[
\left| \sum_{j=1}^N q_n(x) \right| = \left| \sum_{j=1}^N s_j \right| > \sqrt{p_n} \quad (n = 1, 2, \ldots),
\]

i.e., [see (22)], \(\lim_{n \to \infty} \left| \sigma_n(x) \right| = \infty \). It hence follows that the series (10) diverges at the point \(x_1 \) and the impossibility of case II is thereby proved. The functions \(\mathbb{B} \subset [0, 1] \) with \(0 \leq m = \inf x < \sup x = M = 1 \). Let \([m, M] - \mathbb{B} = \bigcup_{i=1}^\infty (a_i, b_i)\), where \((a_i, b_i)\) are adjacent intervals in \(\mathbb{B} \). Let us define the functions \(f_k(x) \in C(0, 1) \) follows:

\[
q_{2j-1}(x) \quad \text{for} \quad x \in \mathbb{B},
\]

\[
q_{2j-1}(m) \quad \text{for} \quad x \in [0, m],
\]

\[
q_{2j-1}(M) \quad \text{for} \quad x \in [M, 1],
\]

\[
f_{2j-1}(x) = \begin{cases}
q_{2j-1}(a_i) & \text{for} \quad x \in [a_i, a_i + \frac{i-1}{i} (b_i - a_i)] \\
\text{linear in} \quad [a_i + \frac{i-1}{i} (b_i - a_i), b_i] & (1 \leq i < \infty), \\
\end{cases}
\]

and let

\[
f_{2j}(x) = -f_{2j-1}(x) \quad (j = 1, 2, \ldots).
\]

The functions \(f_n(x) \) are those desired. Indeed, the series (4) diverges at each point \(x \in [0, 1] \) since \(f_n(x) = g_n(a) \) for \(n \geq N(x) \) for some point \(a = a(x) \in \mathbb{B} \). On the other hand, evidently the series (3) converges to zero at each point \(x \in [0, 1] \), and the set consists only of one function \(f(x) \equiv 0 \). The theorem is proved.

LITERATURE CITED