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σ-models

The action of a σ-model describing maps X from a 2D worldsheet C to a
target space M with metric h is given by

S = 1
2

∫
C

d2z hij(X) ∂µXi ∂µX
j (1)

Its critical points X(z, z̄) are called harmonic maps.

We will be interested in the case when the target space M is homogeneous:
M = G/H, G compact and simple. We will use the following standard
decomposition of the Lie algebra g of G:

g = h⊕m, (2)

where m ⊥ h with respect to the Killing metric on g.
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Symmetric target spaces

For any homogeneous space one has the following relations:

[h, h] ⊂ h ⇒ h is a subalgebra
[h,m] ⊂ m ⇒ m is a representation of h

A homogeneous space G/H is called symmetric if

[m,m] ⊂ h (3)

Equivalently, there exists a Z2-grading on g, i.e. a Lie algebra homomor-
phism σ of g, such that σ(h) = h and σ(m) = −m.
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Equations of motion. 1

The action of a σ-model with homogeneous target space G/H is globally
invariant under the Lie group G. Therefore, there exists a conserved
Noether current kµ ∈ g:

∂µk
µ = 0 (4)

Since the group G acts transitively on its quotient space G/H, the equa-
tions of motion are in fact equivalent to the conservation of the current.
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Equations of motion. 2

It was observed by Pohlmeyer (’76) that in the case when the target space
is symmetric, the current k is, moreover, flat (with proper normalization):

dk − k ∧ k = 0 (5)

To get an idea, why this can be the case, recall that the Maurer-Cartan
equation has the solution

k = −g−1dg, g ∈ G (6)

What is the relation between g and a point in the configuration space
[g̃] ∈ G/H? The answer is given by Cartan’s embedding G/H ↪→ G:

g = σ̂(g̃)g̃−1 (7)

σ̂ is a Lie group homomorphism induced by the Lie algebra involution σ.
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Equations of motion. 3

Another observation of Pohlmeyer was that the two conditions

d ∗ k = 0 (Conservation) (8)
dk − k ∧ k = 0 (Flatness)

may be rewritten as an equation of flatness of a connection

Au = 1 + u

2 kzdz + 1 + u−1

2 kz̄dz̄, (9)

where we have decomposed the current k as k = kzdz + kz̄dz̄. We have

dAu −Au ∧Au = 0 (10)

This leads to an associated linear system (Lax pair)

(d−Au)Ψ = 0 (11)
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Integrability

The existence of a linear system described above is often a sufficient
condition for the classical integrability of the model.

The linear system was used by Zakharov & Mikhaylov (’79) to solve the
equations of motion for the principal chiral model (target space G). A
more rigorous approach was developed by Uhlenbeck (’89). Solutions of
the e.o.m. for σ-models with symmetric target spaces may be obtained by
restricting the solutions of the principal chiral model.

For homogeneous, but not symmetric target spaces, no linear system is
known (no Cartan involution). Hence the models are believed to be
non-integrable.
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A different model

We will consider the simplest homogeneous, but non-symmetric target
space – the flag manifold

F3 = U(3)
U(1)3 (12)

It is the space of ordered triples of lines through the origin in C3, and can
be parametrized by three orthonormal vectors

ui, i = 1, 2, 3
ūi ◦ uj = δij , modulo phase rotations: uk ∼ eiαkuk.
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Complex structures on the flag manifold

To formulate the model, we need to pick a particular complex structure
on F3. The (co)tangent space to F3 is spanned at each point by the
one-forms

Jij := ui ◦ dūj , i 6= j (13)

One can pick any three non-mutually conjugate one-forms and define the
action of the complex structure operator I on them:

I ◦ J12 = ±iJ12, I ◦ J23 = ±iJ23, I ◦ J31 = ±iJ31 (14)

Altogether there are 23 = 8 possible choices, so that there are 8 invariant
almost complex structures. However, only 6 of them are integrable.
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The action

Pick any integrable complex structure I , and the metric h on F3 induced
from the Killing metric on the Lie algebra su(3). The proposed model has
the action

S =
∫
C

d2z ‖∂X‖2 +
∫
C

ω = (15)

=
∫
C

d2z
(
hij∂µX

i∂µX
j + εµνωij∂µX

i∂νX
j
)
,

where ω = h ◦I is the Kähler form. Note, however, that the metric h is
not Kähler, hence the form ω is not closed: dω 6= 0. Therefore the second
term in (15) contributes to the e.o.m.!
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The action simplified

Pick the integrable complex structure I , in which J12, J13, J23 are holo-
morphic one-forms. Then the action can be written as (DB ’14)

S =
∫
d2z

(
|(J12)z̄|2 + |(J13)z̄|2 + |(J23)z̄|2

)
(16)

The e.o.m. are:

Dz(J12)z̄ = 0, Dz(J31)z̄ = 0, Dz(J23)z̄ = 0 (17)

From the action (16) it is clear that the holomorphic curves defined by
(J12)z̄ = (J13)z̄ = (J23)z̄ = 0 minimize the action, hence are solutions
of the e.o.m. From (17) it follows that (J12)z̄ = (J31)z̄ = (J23)z̄ = 0
is a solution as well. This defines a curve, holomorphic in a different,
non-integrable almost complex structure I.
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Holomorphic curves. 1

We have seen that the curves, holomorphic in at least two different almost
complex structures, satisfy the e.o.m. As we discussed, there are 8 almost
complex structures on the flag manifold. Are there any other holomorphic
curves that still solve the e.o.m.?
The answer is YES. The relevant complex structures are:

1

2

3

2 2

J12 J23
J13

J12 J32
J31

J21 J23
J31

1

2

3

J12 J23
J31

1

2

3

J13 J32
J21

1 3 1 3

Q1 Q2 Q3

QI Q-I
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Holomorphic curves. 2

We have already discussed why the QI -holomorphic curves and Q1-
holomorphic curves satisfy the e.o.m.

To see why the Q2- and Q3-holomorphic curves satisfy the e.o.m., one
should note that the differences between the respective Kähler forms are
closed forms, i.e. for example ω1 − ω2 = Ωtop with dΩtop = 0. Therefore
the two actions S1 and S2 differ by a topological term:

S1 − S2 =
∫
C

Ωtop (18)
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Holomorphic curves. 3

This leads to an interesting bound on the instanton numbers of the
holomorphic curves. To see this, note that the flag manifold may be
embedded as

i : F3 ↪→ CP2 × CP2 × CP2 (19)

The second cohomology H2(F3,R) = R2 can be described via the pull-
backs of the Fubini-Study forms of the CP2’s, and the corresponding
instanton numbers are ni =

∫
C
i∗(Ω(i)

FS), i = 1, 2, 3.

These are subject to the condition

n1 + n2 + n3 = 0. (20)
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Holomorphic curves. 4

The bounds on the topological numbers ni for the holomorphic curves,
which follow from the non-negativity of the actions Si, are:

n1

n3

n2

I1

I2

I3

n1 n2 n3+ + =0
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Solutions for C = CP1

The main point of introducing the action (16) is that, as it turns out, the
corresponding Noether current is flat, in full analogy with what happens
for σ-models with symmetric target-spaces.

The full consequences of this fact still remain to be investigated, but for
the moment we can provide a complete description of the solutions of the
e.o.m. for the case when the worldsheet C = CP1. To describe these
solutions, one should recall that there exist three fibrations

πi : F3 → (CP2)i, i = 1, 2, 3, (21)

each with fiber CP1.
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Solutions for C = CP1. 2

All solutions to the e.o.m. are parametrized by the following data:

• One of the projections πi : F3 → (CP2)i, i = 1, 2, 3

• A harmonic map vhar : CP1 → (CP2)i to the base of the projection

• A holomorphic map whol : CP1 → CP1 to the fiber of the projection,
.

For every triple (i, vhar, whol) there exists a solution of the e.o.m., and all
solutions are obtained in this way. (DB ’15)

The crucial point is that the harmonic maps to the base manifold CP2

are known explicitly (Din, Zakrzewski ’80) (and the holomorphic maps
CP1 → CP1 are just rational functions).

Dmitri Bykov | Steklov Mathematical Institute (Moscow) &
Max-Planck-Institut für Gravitationsphysik (Potsdam)

17/18



Outlook

• σ-models with non-symmetric target spaces are believed to be non-
integrable

• We have proposed a modified σ-model with a non-symmetric target
space, but a non-zero B-field, for which there exists a Lax pair

• For the case when the worldsheet is a sphere, C = CP1, we have
constructed all solutions of the e.o.m.

• Crucial test of integrability: construct solutions for the cylinder
worldsheet, C = S1 × R
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