Sigma-models with non-symmetric homogeneous target spaces

Dmitri Bykov

Steklov Mathematical Institute (Moscow) & Max-Planck-Institut für Gravitationsphysik (Potsdam)

Based on arXiv:1412.3746 and arXiv:1506.08156 SQS 2015, August 5, Dubna

σ -models

The action of a $\sigma\text{-model}$ describing maps X from a 2D worldsheet $\mathscr C$ to a target space $\mathscr M$ with metric h is given by

$$S = \frac{1}{2} \int_{\mathscr{C}} d^2 z \, h_{ij}(X) \, \partial_{\mu} X^i \, \partial_{\mu} X^j \tag{1}$$

Its critical points $X(z, \bar{z})$ are called *harmonic maps*.

We will be interested in the case when the target space \mathscr{M} is homogeneous: $\mathscr{M}=G/H$, G compact and simple. We will use the following standard decomposition of the Lie algebra \mathfrak{g} of G:

$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m},$$
 (2)

where $\mathfrak{m} \perp \mathfrak{h}$ with respect to the Killing metric on \mathfrak{g} .

Symmetric target spaces

For any homogeneous space one has the following relations:

$$\label{eq:bounds} \begin{array}{lll} [\mathfrak{h},\mathfrak{h}]\subset\mathfrak{h} & \Rightarrow & \mathfrak{h} \text{ is a subalgebra} \\ [\mathfrak{h},\mathfrak{m}]\subset\mathfrak{m} & \Rightarrow & \mathfrak{m} \text{ is a representation of } \mathfrak{h} \end{array}$$

A homogeneous space G/H is called $\emph{symmetric}$ if

$$[\mathfrak{m},\mathfrak{m}]\subset\mathfrak{h}$$
 (3)

Equivalently, there exists a \mathbb{Z}_2 -grading on \mathfrak{g} , i.e. a Lie algebra homomorphism σ of \mathfrak{g} , such that $\sigma(\mathfrak{h}) = \mathfrak{h}$ and $\sigma(\mathfrak{m}) = -\mathfrak{m}$.

Equations of motion. 1

The action of a σ -model with homogeneous target space G/H is globally invariant under the Lie group G. Therefore, there exists a conserved Noether current $k^{\mu} \in \mathfrak{g}$:

$$\partial_{\mu}k^{\mu} = 0 \tag{4}$$

Since the group G acts transitively on its quotient space G/H, the equations of motion are in fact *equivalent* to the conservation of the current.

Equations of motion. 2

It was observed by Pohlmeyer ('76) that in the case when the target space is *symmetric*, the current k is, moreover, flat (with proper normalization):

$$dk - k \wedge k = 0 \tag{5}$$

To get an idea, why this can be the case, recall that the Maurer-Cartan equation has the solution

$$k = -g^{-1}dg, \qquad g \in G \tag{6}$$

What is the relation between g and a point in the configuration space $[\tilde{g}] \in G/H$? The answer is given by Cartan's embedding $G/H \hookrightarrow G$:

$$g = \widehat{\sigma}(\widetilde{g})\widetilde{g}^{-1} \tag{7}$$

 $\widehat{\sigma}$ is a Lie group homomorphism induced by the Lie algebra involution $\sigma.$

Equations of motion. 3

Another observation of Pohlmeyer was that the two conditions

$$d * k = 0$$
 (Conservation) (8)
 $dk - k \wedge k = 0$ (Flatness)

may be rewritten as an equation of flatness of a connection

$$A_u = \frac{1+u}{2} k_z dz + \frac{1+u^{-1}}{2} k_{\bar{z}} d\bar{z}, \tag{9}$$

where we have decomposed the current k as $k=k_zdz+k_{\bar{z}}d\bar{z}.$ We have

$$dA_u - A_u \wedge A_u = 0 (10)$$

This leads to an associated linear system (Lax pair)

$$(d - A_u)\Psi = 0 (11)$$

Integrability

The existence of a linear system described above is often a sufficient condition for the classical integrability of the model.

The linear system was used by Zakharov & Mikhaylov ('79) to solve the equations of motion for the principal chiral model (target space G). A more rigorous approach was developed by Uhlenbeck ('89). Solutions of the e.o.m. for σ -models with symmetric target spaces may be obtained by restricting the solutions of the principal chiral model.

For <u>homogeneous</u>, but not symmetric target spaces, no linear system is known (no Cartan involution). Hence the models are believed to be non-integrable.

A different model

We will consider the simplest homogeneous, but non-symmetric target space – the flag manifold

$$\mathcal{F}_3 = \frac{U(3)}{U(1)^3} \tag{12}$$

It is the space of ordered triples of lines through the origin in \mathbb{C}^3 , and can be parametrized by three orthonormal vectors

$$u_i, \quad i = 1, 2, 3$$

$$\bar{u}_i \circ u_j = \delta_{ij}$$
, modulo phase rotations: $u_k \sim e^{i\alpha_k}u_k$.

Complex structures on the flag manifold

To formulate the model, we need to pick a particular complex structure on \mathcal{F}_3 . The (co)tangent space to \mathcal{F}_3 is spanned at each point by the one-forms

$$J_{ij} := u_i \circ d\bar{u}_j, \quad i \neq j \tag{13}$$

One can pick any three non-mutually conjugate one-forms and define the action of the complex structure operator I on them:

$$I \circ J_{12} = \pm i J_{12}, \quad I \circ J_{23} = \pm i J_{23}, \quad I \circ J_{31} = \pm i J_{31}$$
 (14)

Altogether there are $2^3=8$ possible choices, so that there are 8 invariant almost complex structures. However, only 6 of them are *integrable*.

The action

Pick any integrable complex structure \mathscr{I} , and the metric h on \mathcal{F}_3 induced from the Killing metric on the Lie algebra su(3). The proposed model has the action

$$S = \int_{\mathscr{C}} d^2 z \, \|\partial X\|^2 + \int_{\mathscr{C}} \omega =$$

$$= \int_{\mathscr{C}} d^2 z \, \left(h_{ij} \partial_{\mu} X^i \partial_{\mu} X^j + \epsilon_{\mu\nu} \omega_{ij} \partial_{\mu} X^i \partial_{\nu} X^j \right), \tag{15}$$

where $\omega=h\circ\mathscr{I}$ is the Kähler form. Note, however, that the metric h is not Kähler, hence the form ω is not closed: $d\omega\neq 0$. Therefore the second term in (15) contributes to the e.o.m.!

The action simplified

Pick the integrable complex structure \mathscr{I} , in which J_{12}, J_{13}, J_{23} are holomorphic one-forms. Then the action can be written as (DB '14)

$$S = \int d^2z \left(|(J_{12})_{\bar{z}}|^2 + |(J_{13})_{\bar{z}}|^2 + |(J_{23})_{\bar{z}}|^2 \right)$$
 (16)

The e.o.m. are:

$$\mathscr{D}_z(J_{12})_{\bar{z}} = 0, \qquad \mathscr{D}_z(J_{31})_{\bar{z}} = 0, \qquad \mathscr{D}_z(J_{23})_{\bar{z}} = 0$$
 (17)

From the action (16) it is clear that the holomorphic curves defined by $(J_{12})_{\bar{z}}=(J_{13})_{\bar{z}}=(J_{23})_{\bar{z}}=0$ minimize the action, hence are solutions of the e.o.m. From (17) it follows that $(J_{12})_{\bar{z}}=(J_{31})_{\bar{z}}=(J_{23})_{\bar{z}}=0$ is a solution as well. This defines a curve, holomorphic in a different, non-integrable almost complex structure I.

We have seen that the curves, holomorphic in at least two different almost complex structures, satisfy the e.o.m. As we discussed, there are 8 almost complex structures on the flag manifold. Are there any other holomorphic curves that still solve the e.o.m.?

The answer is YES. The relevant complex structures are:

We have already discussed why the \mathcal{Q}_I -holomorphic curves and \mathcal{Q}_1 -holomorphic curves satisfy the e.o.m.

To see why the \mathcal{Q}_2 - and \mathcal{Q}_3 -holomorphic curves satisfy the e.o.m., one should note that the differences between the respective Kähler forms are closed forms, i.e. for example $\omega_1-\omega_2=\Omega_{top}$ with $d\Omega_{top}=0$. Therefore the two actions \mathcal{S}_1 and \mathcal{S}_2 differ by a topological term:

$$S_1 - S_2 = \int\limits_{\mathscr{L}} \Omega_{top} \tag{18}$$

This leads to an interesting bound on the instanton numbers of the holomorphic curves. To see this, note that the flag manifold may be embedded as

$$i: \mathcal{F}_3 \hookrightarrow \mathbb{CP}^2 \times \mathbb{CP}^2 \times \mathbb{CP}^2$$
 (19)

The second cohomology $H^2(\mathcal{F}_3,\mathbb{R})=\mathbb{R}^2$ can be described via the pullbacks of the Fubini-Study forms of the \mathbb{CP}^2 's, and the corresponding instanton numbers are $n_i=\int\limits_{\mathbb{C}}i^*(\Omega_{FS}^{(i)}),\ i=1,2,3.$

These are subject to the condition

$$n_1 + n_2 + n_3 = 0. (20)$$

The bounds on the topological numbers n_i for the holomorphic curves, which follow from the non-negativity of the actions S_i , are:

Solutions for $\mathscr{C}=\mathbb{CP}^1$

The main point of introducing the action (16) is that, as it turns out, the corresponding Noether current is <u>flat</u>, in full analogy with what happens for σ -models with *symmetric* target-spaces.

The full consequences of this fact still remain to be investigated, but for the moment we can provide a complete description of the solutions of the e.o.m. for the case when the worldsheet $\mathscr{C}=\mathbb{CP}^1$. To describe these solutions, one should recall that there exist three fibrations

$$\pi_i: \mathcal{F}_3 \to (\mathbb{CP}^2)_i, \quad i = 1, 2, 3,$$
 (21)

each with fiber \mathbb{CP}^1 .

Solutions for $\mathscr{C}=\mathbb{CP}^1$. 2

All solutions to the e.o.m. are parametrized by the following data:

- One of the projections $\pi_i: \mathcal{F}_3 \to (\mathbb{CP}^2)_i, \quad i=1,2,3$
- ullet A <u>harmonic</u> map $v_{har}:\mathbb{CP}^1 o (\mathbb{CP}^2)_i$ to the base of the projection
- A holomorphic map $w_{hol}:\mathbb{CP}^1 o \mathbb{CP}^1$ to the fiber of the projection,

For every triple (i, v_{har}, w_{hol}) there exists a solution of the e.o.m., and all solutions are obtained in this way. (DB '15)

The crucial point is that the harmonic maps to the base manifold \mathbb{CP}^2 are known explicitly (Din, Zakrzewski '80) (and the holomorphic maps $\mathbb{CP}^1 \to \mathbb{CP}^1$ are just rational functions).

Outlook

- \bullet $\sigma\text{-models}$ with non-symmetric target spaces are believed to be non-integrable
- We have proposed a modified σ -model with a non-symmetric target space, but a non-zero B-field, for which there exists a Lax pair
- For the case when the worldsheet is a sphere, $\mathscr{C}=\mathbb{CP}^1$, we have constructed *all* solutions of the e.o.m.
- \bullet Crucial test of integrability: construct solutions for the cylinder worldsheet, $\mathscr{C}=S^1\times\mathbb{R}$