Home page
Home page
Home page
Russian page
English page
Math-Net.Ru | MMS | Web of Science | Scopus | MathSciNet | zbMATH | Web-mail 

   
 About the Institute
 Staff publications
 Administration
 Academic Council
 Dissertation Councils
 Departments
Staff 
 Chair at MIPT
 Seminars
 Conferences
 Events
 Journals and Books
 In memoriam
 Photogallery
 Charter


    Address
8 Gubkina St. Moscow,
119991, Russia
Tel.: +7(495) 984 81 41
Fax: +7(495) 984 81 39
Web site: www.mi-ras.ru
E-mail: steklov@mi-ras.ru

View Map
Directions

   

Department of Mathematical Methods for Quantum Technologies

| Seminars | Twitter | History, Goal and Research Areas | Grants | Conferences and Seminars | Education and Popularization | Publications |
Staff
Pechen Alexander Nikolaevich

Doctor Phys.-Math. Sci., Professor of RAS, Head of Department, Leading Scientific Researcher
office: 438 ; tel.: +7 (495) 984 81 41 * 39 92; e-mail: pechen@mi-ras.ru
Principal fields of research: Dynamics of open quantum systems. Quantum control.
Pechen Alexander Nikolaevich
Ageev Dmitrii Sergeevich

Candidate Phys.-Math. Sci., Scientific Researcher
office: 807; e-mail: ageev@mi-ras.ru
Principal fields of research: holographic correspondence, quantum field theory, quantum information theory, chaos theory, quantum complexity theory.
Ageev Dmitrii Sergeevich
Ermakov Igor Vladimirovich

Junior Researcher
office: 809; e-mail: ermakov1054@yandex.ru
Principal fields of research: quantum integrable systems, algebraic Bethe ansatz, quantum dynamics, quantum many body scars, ultracold atoms, non-Hermitian Hamiltonians.
Ermakov Igor Vladimirovich
Filippov Sergey Nikolaevich

Candidate Phys.-Math. Sci., Senior Scientific Researcher
office: 806; e-mail: sergey.filippov@phystech.edu
Personal page: https://sites.google.com/view/filippovsn
Principal fields of research: quantum dynamical maps, quantum channels, quantum measurements, dynamics of quantum entanglement, tensor networks.
Filippov  Sergey  Nikolaevich
Khramtsov Mikhail Alexandrovich

Candidate Phys.-Math. Sci., Scientific Researcher
office: 807; e-mail: khramtsov@mi-ras.ru
Principal fields of research: holographic principle, quantum field theory at strong coupling, quantum gravity, black holes, thermalization.
Khramtsov Mikhail Alexandrovich
Kiktenko Evgeniy Olegovich

Candidate Phys.-Math. Sci., Senior Scientific Researcher
office: 431; e-mail: evgeniy.kiktenko@gmail.com
Principal fields of research: quantum communication, quantum computing .
Kiktenko Evgeniy Olegovich
Kronberg Dmitry Anatolievich

Candidate Phys.-Math. Sci., Senior Scientific Researcher
office: 431; e-mail: dmitry.kronberg@gmail.com
Principal fields of research: quantum cryptography, quantum information theory.
Kronberg Dmitry Anatolievich
Lyakhov Konstantin Andreevich

Candidate Phys.-Math. Sci., Senior Scientific Researcher
office: 809; e-mail: lyakhov2000@yahoo.com
Principal fields of research: laser isotope separation, photonics, gas dynamics, vacuum and quantum technologies.
Lyakhov Konstantin Andreevich
Lychkovskiy Oleg Valentinovich

Candidate Phys.-Math. Sci., Senior Scientific Researcher
office: 431; e-mail: O.Lychkovskiy@skoltech.ru
Principal fields of research: quantum many-body dynamics, adiabatic approximation, adiabatic quantum computing, quantum integrable systems.
Lychkovskiy Oleg Valentinovich
Morzhin Oleg Vasil'evich

Candidate Phys.-Math. Sci., Senior Scientific Researcher
office: 809; e-mail: oleg_morzhin@mi-ras.ru
Principal fields of research: optimal control, optimization methods, control of quantum systems.
Morzhin Oleg Vasil'evich
Teretenkov Aleksandr Evgen'evich

Candidate Phys.-Math. Sci., Scientific Researcher
office: 429; e-mail: taemsu@mail.ru
Principal fields of research: irreversible quantum dynamics with quadratic generators, exactly solvable models of non-Markov quantum dynamics, quantum theory of open systems.
Teretenkov Aleksandr Evgen'evich

Volkov Boris Olegovich

Candidate Phys.-Math. Sci., Senior Scientific Researcher
e-mail: borisvolkov1986@gmail.com
Top
Seminars
Seminar of the Department of Mathematical Methods for Quantum Technologies, Steklov Mathematical Institute of RAS
Seminar organizer: A. N. Pechen
Steklov Mathematical Institute, Gubkina 8
Top
Twitter
https://twitter.com/QuantumSteklov
Top
History, Goal and Research Areas

The Department of Mathematical Methods for Quantum Technologies was established in Steklov Mathematical Institute in December 2018 on the base of the Laboratory of Mathematical Methods for Quantum Technologies, which was created in 2016. The Department was established with the goal of solving mathematical problems necessary for the development of quantum technologies. Quantum technologies exploit for practical purposes various specific properties of individual quantum systems such as photons, atoms, molecules. Examples of peculiar quantum properties are superposition of quantum states, quantum entanglement, Heisenberg uncertainty principle. Directions of quantum technologies include quantum information, quantum control, quantum computation and simulators, quantum cryptography, quantum metrology, etc. In this field, a number of mathematical problems arise which are investigated by the employees of the Department.

Tasks of the Department:
  1. Performing of fundamental and applied research in the areas:
    • Open quantum systems;
    • Quantum control;
    • Quantum information;
    • Quantum cryptography;
    • Quantum complexity;
    • Quantum tomography;
    • Quantum teleportation;
    • Many-body quantum systems;
    • Adiabatic quantum computing;
    • Non-equilibrium quantum dynamics;
    • Holography & quantum information.
  2. Development and reading of novel training courses on quantum technologies for students, graduate students and young scientists in the Research and Education Center of Steklov Mathematical Institute and other Universities and Institutes, organization of workshops, popularization of quantum technologies.

Head of the Department — Alexander Pechen, Professor of the Russian Academy of Sciences, Doctor of Physical and Mathematical Sciences, specialist in the field of theory of open quantum systems, quantum control, quantum stochastic processes. In 2001 he graduated from Moscow State University, in 2004 received PhD degree at Steklov Institute, in the period 2005–2010 worked at Princeton University, in 2010–2012 at Weizmann Institute of Science. Then he came to Steklov Institute, where in 2014 obtained Doctor of Physical and Mathematical Sciences (Habilitation) degree. A. Pechen is a laureate of the Blavatnik Award (USA, 2009), International Incoming Marie Curie Fellowship (2011), and Moscow Government Award for Young Scientists (2013). He is a member of the Dissertation Council of Steklov Institute, of the Editorial board of the journal Infinite Dimensional Analysis, Quantum Probability and Related Topics, and of the Academic Council of the International Association "The Association for Quantum Probability and Infinite Dimensional Analysis".

Top
Grants
Projects of the Russian Science Foundation performed in the Department:
  1. Project No. 17-11-01388 «Mathematical Methods for Problems of Quantum Technologies and Dynamics of Open Quantum Systems» (2017–2019; Principal investigator A.N. Pechen);
  2. Project No. 17-11-01388-P «Mathematical Methods for Problems of Quantum Technologies and Dynamics of Open Quantum Systems» (prolonged; 2020–2021; Principal investigator A.N. Pechen);
  3. Project No. 18-71-00074 «Using pseudorandom number generators in quantum cryptography» (2018–2019; Principal investigator D.A. Kronberg).
  4. Project No. 20-71-10072 «The effect of interaction with the environment on the information properties of quantum channels» (2020–2022; Principal investigator D.A. Kronberg).
Top
Conferences and Seminars

Seminar of the Department of Mathematical Methods for Quantum Technologies, Steklov Mathematical Institute of RAS
Seminar organizer: A. N. Pechen
Steklov Mathematical Institute, Gubkina 8

Workshop «Mathematical Methods in the Problems of Quantum Technology» was organised in the Steklov Institute on October 9, 2017. The participants from Princeton University (USA), National University of Jeju (Korea), Moscow Institute of Physics and Technology (Moscow Region), Skolkovo Institute of Science and Technology, Russian Quantum Center, Steklov Mathematical Institute (Moscow). Various topics in mathematical methods of quantum technologies were discussed including control of quantum systems, dynamics of open quantum systems, quantum cryptography, quantum adiabaticity, laser-assisted isotope separation.
Second workshop «Mathematical Methods in the Problems of Quantum Technology» was held in the Steklov Institute on November 26, 2018. Participants from Steklov Institute, Tulane University (USA), National University of Jeju (Korea), MISiS, Moscow Institute of Physics and Technology, Skolkovo Institute of Science and Technology gave talks on various topics in mathematical methods of quantum technologies, including control of quantum systems, quantum Sinkhorn's theorem, quantum cryptography, laser-assisted isotope separation, parametrizations of density matrices.
On November 25, 2019, the third youth workshop «Mathematical Methods in the Problems of Quantum Technologies» was held. The event was attended by researchers, graduate students and students of Steklov Mathematical Institute, MISIS, Center for Quantum Technologies at Moscow State University, Russian Quantum Center, MIPT, St. Petersburg State University, Skolkovo Institute of Science and Technology. The topics of quantum information theory, control of quantum systems, the theory of open quantum systems, quantum cryptography, quantum integrable systems, and optimal laser isotope separation were discussed.
On November 2–5, 2020, the conference "Mathematical methods in the problems of quantum technologies" was held. The conference was devoted to the discussion of problems in the fundamental areas of mathematical methods of quantum technologies, including quantum information theory, control of open quantum systems, the theory of open quantum systems, quantum cryptography, quantum chaos, quantum adiabaticity, and other areas.
Education and Popularization
In 2020, the Department «Methods of Modern Mathematics» was created at Moscow Institute of Physics and Technology on the base of Steklov Mathematical Institute. The Department includes Masters Program «Methods of Quantum Technologies and Mathematical Physics». The program offers courses by leading scientists on quantum information theory, quantum control, quantum cryptography and quantum communications, quantum computation and algorithms, theory of open quantum systems. These courses discuss both basic fundamental results and various applied methods closely connected with modern practical problems in the rapidly developing field of quantum technologies. Students of any universities who have passed the entrance exams can apply for program.
Web page of the Department: http://www.mi-ras.ru/index.php?c=chairmfti&l=1
The contact person for the quantum profile is Alexander Pechen, apechen@gmail.com

The department researchers have developed and teach courses at the Scientific and Educational Center of the Steklov Mathematical Institute:
Popularization of Science:
Alexander Pechen, «Quantum technologies», Interview at NaukaPRO, October 4, 2020
Alexander Pechen, «Mathematics of quantum technologies», presentation at the General Meeting of the Branch of Mathematical Sciences, Russian Academy of Sciences (in Russian), 12 Nov 2018
Alexander Pechen, «Some topics in dynamics and control of quantum systems»,In the broadcast «Moscow. Territory of science» on radio station «Echo of Moscow» (in Russian), 29 May 2014 Listen
Dmitry Kronberg, «Quantum key distribution security and related problems», Colloquium of the Steklov Mathematical Institute of Russian Academy of Sciences, May 10, 2018
Dmitry Kronberg, «Quantum cryptography», Interview at NaukaPRO, November 29, 2020


Top
Education and Popularization
In 2020, the Department «Methods of Modern Mathematics» was created at Moscow Institute of Physics and Technology on the base of Steklov Mathematical Institute. The Department includes Masters Program «Methods of Quantum Technologies and Mathematical Physics». The program offers courses by leading scientists on quantum information theory, quantum control, quantum cryptography and quantum communications, quantum computation and algorithms, theory of open quantum systems. These courses discuss both basic fundamental results and various applied methods closely connected with modern practical problems in the rapidly developing field of quantum technologies. Students of any universities who have passed the entrance exams can apply for program.
Web page of the Department: http://www.mi-ras.ru/index.php?c=chairmfti&l=1
The contact person for the quantum profile is Alexander Pechen, apechen@gmail.com

The department researchers have developed and teach courses at the Scientific and Educational Center of the Steklov Mathematical Institute:
Popularization of Science:
Alexander Pechen, «Quantum technologies», Interview at NaukaPRO, October 4, 2020
Alexander Pechen, «Mathematics of quantum technologies», presentation at the General Meeting of the Branch of Mathematical Sciences, Russian Academy of Sciences (in Russian), 12 Nov 2018
Alexander Pechen, «Some topics in dynamics and control of quantum systems»,In the broadcast «Moscow. Territory of science» on radio station «Echo of Moscow» (in Russian), 29 May 2014 Listen
Dmitry Kronberg, «Quantum key distribution security and related problems», Colloquium of the Steklov Mathematical Institute of Russian Academy of Sciences, May 10, 2018
Dmitry Kronberg, «Quantum cryptography», Interview at NaukaPRO, November 29, 2020


Recent publications

Steklov Mathematical Institute staff Steklov Mathematical Institute staff and out-of-staff employees
| by years | scientific publications | by types |



   2021
1. Matematika kvantovykh tekhnologii, Sbornik statei, Trudy MIAN, 313, ed. A. N. Pechen, I. V. Volovich, G. G. Amosov, A. E. Teretenkov, MIAN, M., 2021 , 296 pp.  mathnet
2. Oleg V. Morzhin, Alexander N. Pechen, “On Reachable and Controllability Sets for Minimum-Time Control of an Open Two-Level Quantum System”, Proc. Steklov Inst. Math., 313 (2021), 149–164  mathnet  crossref  crossref  isi  scopus
3. K. A. Lyakhov, A. N. Pechen, “Constrained Optimization Criterion for Zirconium Isotope Separation by the Method of Laser-Assisted Retardation of Condensation”, Proc. Steklov Inst. Math., 313 (2021), 131–141  mathnet  crossref  crossref  isi  scopus
4. G. G. Amosov, A. S. Mokeev, A. N. Pechen, “Noncommutative graphs based on finite-infinite system couplings: Quantum error correction for a qubit coupled to a coherent field”, Phys. Rev. A, 103:4 (2021), 042407 , 17 pp., arXiv: 2104.11937  mathnet  crossref  isi  scopus;
5. B. O. Volkov, O. V. Morzhin, A. N. Pechen, “Quantum control landscape for ultrafast generation of single-qubit phase shift quantum gates”, J. Phys. A: Math. Theor., 54:21 (2021), 215303 , 23 pp., arXiv: 2104.12699  mathnet  crossref  isi (cited: 1)  scopus (cited: 2);
6. O. V. Morzhin, A. N. Pechen, “Minimal time generation of density matrices for a two-level quantum system driven by coherent and incoherent controls”, Internat. J. Theoret. Phys., 60 (2021), 576–584 , arXiv: 1909.09400  mathnet  crossref  isi (cited: 7)  scopus (cited: 8);
7. K. A. Lyakhov, A. N. Pechen, “Selective multi-line excitation of isotopologues with similar quantum spectra as a function of gas flow pressure, temperature, and laser pulse spectrum”, AIP Conf. Proc., 2362, 2021, 040008 , 6 pp.  mathnet  crossref  scopus;
8. Oleg V. Morzhin, Alexander N. Pechen, “Numerical estimation of reachable and controllability sets for a two-level open quantum system driven by coherent and incoherent controls”, AIP Conf. Proc., 2362, 2021, 060003 , 16 pp., arXiv: 2106.10146  mathnet  crossref  scopus (cited: 1);
9. Lev Lokutsievskiy and Alexander Pechen, “Reachable sets for two-level open quantum systems driven by coherent and incoherent controls”, J. Phys. A: Math. Theor., 54 (2021), 395304 , 20 pp., arXiv: 2109.04384  mathnet  crossref  isi  scopus
10. E. B. Fel'dman, A. N. Pechen, A. I. Zenchuk, “Complete structural restoring of transferred multi-qubit quantum state”, Phys. Lett. A, 413 (2021), 127605 , 13 pp., arXiv: 2104.13762  mathnet  crossref  isi  scopus;
11. O. V. Morzhin, A. N. Pechen, “Generation of Density Matrices for Two Qubits Using Coherent and Incoherent Controls”, Lobachevskii Journal of Mathematics, 42:10 (2021), 2401–2412  crossref
12. Oleksandr V. Gamayun, Oleg V. Lychkovskiy, “A Map between Time-Dependent and Time-Independent Quantum Many-Body Hamiltonians”, Proc. Steklov Inst. Math., 313 (2021), 41–51  mathnet  crossref  crossref  isi  scopus
13. Oleksandr Gamayun, Artur Slobodeniuk, Jean-Sébastien Caux, Oleg Lychkovskiy, “Nonequilibrium phase transition in transport through a driven quantum point contact”, Phys. Rev. B, 103 (2021), 41405 , 19 pp., arXiv: 2006.02400  mathnet  crossref  isi  scopus (cited: 3);
14. N. Il'in, O. Lychkovskiy, “Quantum speed limits for adiabatic evolution, Loschmidt echo and beyond”, Internat. J. Theoret. Phys., 60 (2021), 640–649 , arXiv: 1805.04083  mathnet  crossref  zmath  isi (cited: 1)  scopus;
15. A. S. Trushechkin, E. O. Kiktenko, D. A. Kronberg, A. K. Fedorov, “Security of the decoy state method for quantum key distribution”, Phys. Usp., 64:1 (2021), 88–102  mathnet  crossref  crossref  isi (cited: 3)  scopus (cited: 1)
16. D. A. Kronberg, “Increasing the Distinguishability of Quantum States with an Arbitrary Success Probability”, Proc. Steklov Inst. Math., 313 (2021), 113–119  mathnet  crossref  crossref  isi  scopus
17. N. R. Kenbaev, D. A. Kronberg, “Quantum measurement with post-selection for two mixed states”, AIP Conf. Proc., 2362, 2021, 050001 , 5 pp.  mathnet  crossref  scopus;
18. A. B. Sagingalieva, D. A. Kronberg, “Adaptive algorithms of error correction and error estimation in quantum cryptography”, AIP Conf. Proc., 2362, 2021, 050002 , 8 pp.  mathnet  crossref  scopus;
19. Alexey Kodukhov, Dmitry Kronberg, “Measuring entangled state: On connection between observable uncertainty and ensemble coherence”, AIP Conf. Proc., 2362, 2021, 050003 , 7 pp.  mathnet  crossref  scopus;
20. D. A. Kronberg, “Comment on “Practical quantum key distribution with geometrically uniform states””, Phys. Rev. A, 104:2 (2021), 026401 , 3 pp.  mathnet  crossref  isi  scopus;
21. A. S. Avanesov, D. A. Kronberg, “On Eavesdropping Strategy for Symmetric Coherent States Quantum Cryptography Using Heterodyne Measurement”, Lobachevskii Journal of Mathematics, 42:10 (2021), 2285–2294  crossref
22. D. A. Kronberg, “Vulnerabilities of quantum cryptography on geometrically uniform coherent states”, Quantum Electronics, 51:10 (2021), 928–937  crossref
23. A. D. Kodukhov, V. A. Pastushenko, N. S. Kirsanov, D. A. Kronberg, V. M. Vinokur, M. Pflitsch, G. B. Lesovik, Boosting quantum key distribution via the end-to-end physical control, 2021 , 14 pp., arXiv: 2109.05575
24. V. Rodimin, A. Tayduganov, D. Kronberg, Y. Durkin, A. Zharinov, Y. Kurochkin, Go-and-return phase encoded SR QKD and its security consideration, 2021 , 15 pp., arXiv: 2106.10082
25. A. E. Teretenkov, “An Example of Explicit Generators of Local and Nonlocal Quantum Master Equations”, Proc. Steklov Inst. Math., 313 (2021), 236–245  mathnet  crossref  crossref  isi  scopus
26. Alexander E. Teretenkov, “Non-perturbative effects in corrections to quantum master equations arising in Bogolubov–van Hove limit”, J. Phys. A, 54:26 (2021), 265302 , 24 pp., arXiv: 2008.02820  mathnet  crossref  isi  scopus (cited: 1);
27. Ilia A. Luchnikov, Alexander Ryzhov, Sergey N. Filippov, Henni Ouerdane, “QGOpt: Riemannian optimization for quantum technologies”, SciPost Phys., 10:3 (2021), 79 , 26 pp., arXiv: 2011.01894  mathnet  crossref  isi (cited: 1)  scopus (cited: 1);
28. S. N. Filippov, “Trace decreasing semigroup for an open quantum system interacting with a repeatedly measured ancilla”, International Online Conference “One-Parameter Semigroups of Operators”, Book of Abstracts (5-9 aprelya 2021 g., Nizhnii Novgorod), 2021, 97 (Published online) https://nnov.hse.ru/bipm/dsa/opso2021/talks
29. Sergey N. Filippov, “Capacity of trace decreasing quantum operations and superadditivity of coherent information for a generalized erasure channel”, J. Phys. A, 54:25 (2021), 255301 , 24 pp., arXiv: 2101.05686  mathnet  crossref  isi (cited: 2)  scopus (cited: 3);
30. S. N. Filippov, “Information properties of trace decreasing quantum operations”, International conference “Mathematical Physics, Dynamical Systems, Infinite-Dimensional Analysis” (MPDSIDA-2021), Book of Abstracts, ISBN 978-5-6043721-8-0 (Dolgoprudny, Russia, June 30 – July 9, 2021), 2021, 48–50 http://www.mathnet.ru/supplement/conf/1918/Abstracts-MPDSIDA2021.pdf
31. S. N. Filippov, “Generalized quantum erasure channel and superadditivity of coherent information”, The 41st International Conference on Quantum Probability and Related Topics (QP41-2021) (UAE, 28 March – 1 April, 2021), United Arab Emirates University, 2021, 20–21
32. Ilya A. Luchnikov, Mikhail E. Krechetov, Sergey N. Filippov, “Riemannian geometry and automatic differentiation for optimization problems of quantum physics and quantum technologies”, New J. Phys., 23 (2021), 073006 , 25 pp., arXiv: 2007.01287  mathnet  crossref  adsnasa  isi  scopus (cited: 1);
33. S. N. Filippov, “Riemannian gradient for manifolds of density matrices and isometric matrices to solve optimization problems of quantum information theory”, International Conference “Topological Methods in Dynamics and Related Topics – IV”. Book of Abstracts (Nizhnii Novgorod, 2–5 avgusta 2021 g.), National Research University Higher School of Economics, 2021, 14–15
34. Sergey N. Filippov, “Entanglement robustness in trace decreasing quantum dynamics”, Quanta, 10:1 (2021), 15–21 , arXiv: 2109.01546  mathnet  crossref  adsnasa  scopus;
35. S. N. Filippov, “Umenshayuschie sled kvantovye otobrazheniya i ikh svoistva”, Materialy Mezhdunarodnoi konferentsii po algebre, analizu i geometrii 2021, g. Kazan, 22–28 avgusta 2021 g., ISBN 978-5-9690-0871-7, Tr. matem. tsentra imeni N.I. Lobachevskogo, 60, Izd-vo Akademii nauk RT, Kazan, 2021, 314–316  mathnet
36. S. N. Filippov, “Yadro uravneniya Nakazhimy–Tsvantsiga dlya otkrytoi kvantovoi sistemy, vzaimodeistvuyuschei s korrelirovannym okruzheniem v modeli stolknovenii”, Teoriya funktsii, teoriya operatorov i kvantovaya teoriya informatsii: sbornik tezisov Mezhdunarodnoi konferentsii (g. Ufa, 4–7 oktyabrya 2021 g.), ISBN 978-5-00177-266-8, AETERNA, Ufa, 2021, 46 https://matem.anrb.ru/conf/sbornik_ufa21.pdf
37. Dmitry S. Ageev, “On Some Aspects of the Holographic Pole-Skipping Phenomenon”, Proc. Steklov Inst. Math., 313 (2021), 1–7  mathnet  crossref  crossref  isi  scopus
38. Dmitry S. Ageev, Butterfly velocity and chaos suppression in de Sitter space, 2021 , 9 pp., arXiv: 2105.02258
39. Dmitry S. Ageev, Butterflies dragging the jets: on the chaotic nature of holographic QCD, 2021 , 9 pp., arXiv: 2105.04589
40. Dmitry S. Ageev, Irina Ya. Arefeva, Anastasia V. Lysukhina, On the nonclassicality in quantum JT gravity, 2021 , 15 pp., arXiv: 2105.06444
41. Dmitry S. Ageev, Shaping contours of entanglement islands in BCFT, 2021 , 19 pp., arXiv: 2107.09083
42. Dmitry S. Ageev, Andrey A. Bagrov, Askar A. Iliasov, “Deterministic chaos and fractal entropy scaling in Floquet conformal field theories”, Phys. Rev. B, 103 (2021), L100302 , 7 pp., arXiv: 2006.11198  mathnet  crossref  isi (cited: 2)  scopus (cited: 4)
43. Mikhail Khramtsov, Elena Lanina, “Spectral form factor in the double-scaled SYK model”, JHEP, 3 (2021), 31 , 38 pp., arXiv: 2011.01906  mathnet  crossref  isi (cited: 1)  scopus (cited: 2);
44. Evgeniy O. Kiktenko, Aeksei O. Malyshev, Alexey K. Fedorov, “Blind information reconciliation with polar codes for quantum key distribution”, IEEE Communications Letters, 25:1 (2021), 79–83 , arXiv: 2008.12299  mathnet  crossref  isi; (Published online)
45. M. A. Kudinov, E. O. Kiktenko, A. K. Fedorov, “Security analysis of the W-OTS$^+$ signature scheme: Updating security bounds”, Matem. vopr. kriptogr., 12:2 (2021), 129–145  mathnet  crossref;

   2020
46. D. I. Bondar, A. N. Pechen, “Uncomputability and complexity of quantum control”, Scientific Reports, 10 (2020), 1195 , 10 pp., arXiv: 1907.10082  mathnet  crossref  isi (cited: 2)  scopus (cited: 3)
47. S. N. Filippov, G. N. Semin, A. N. Pechen, “Quantum master equations for a system interacting with a quantum gas in the low-density limit and for the semiclassical collision model”, Phys. Rev. A, 101 (2020), 12114 , 10 pp., arXiv: 1908.11202  mathnet  crossref  adsnasa  isi (cited: 5)  scopus (cited: 5);
48. G. G. Amosov, A. S. Mokeev, A. N. Pechen, “Non-commutative graphs and quantum error correction for a two-mode quantum oscillator”, Quantum Information Processing, 19:3 (2020), 95 , 12 pp., arXiv: 1910.08935  mathnet  crossref  mathscinet  isi (cited: 6)  scopus (cited: 6);
49. K. A. Lyakhov, A. N. Pechen, “CO$_2$ laser system design for efficient boron isotope separation by the method of selective laser-assisted retardation of condensation”, Applied Physics B, 126 (2020), 141 , 11 pp.  mathnet  crossref  isi (cited: 2)  scopus (cited: 3);
50. O. V. Morzhin, A. N. Pechen, “Maximization of the Uhlmann–Jozsa Fidelity for an Open Two-Level Quantum System with Coherent and Incoherent Controls”, Phys. Part. Nucl., 51:4 (2020), 464–469  mathnet  crossref  isi (cited: 4)  elib  scopus (cited: 5)
51. O. V. Morzhin, A. N. Pechen, “Machine Learning for Finding Suboptimal Final Times and Coherent and Incoherent Controls for an Open Two-Level Quantum System”, Lobachevskii J. Math., 41:12 (2020), 2353–2368  mathnet (cited: 1)  crossref  isi (cited: 4)  elib  scopus (cited: 5);
52. K. A. Lyakhov, A. N. Pechen, “Evolution of the Enrichment Factor for an Iterative Scheme of Zirconium Isotopes Separation”, Lobachevskii J. Math., 41:12 (2020), 2345–2351  mathnet (cited: 1)  crossref  isi (cited: 1)  elib  scopus (cited: 1);
53. Oleksandr Gamayun, Oleg Lychkovskiy, Mikhail B. Zvonarev, “Zero temperature momentum distribution of an impurity in one-dimensional Fermi and Tonks–Girardeau gases”, SciPost Phys., 8 (2020), 53 , 37 pp.  mathnet  crossref  mathscinet  isi  scopus (cited: 6);
54. Oleksandr Gamayun, Oleg Lychkovskiy, Jean-Sébastien Caux, “Fredholm determinants, full counting statistics and Loschmidt echo for domain wall profiles in one-dimensional free fermionic chains”, SciPost Phys., 8 (2020), 36 , 37 pp.  mathnet  crossref  mathscinet  isi  scopus (cited: 11);
55. E. Shpagina, F. Uskov, N. Il'in, O. Lychkovskiy, “Merits of using density matrices instead of wave functions in the stationary Schrödinger equation for systems with symmetries”, J. Phys. A, 53 (2020), 75301 , 10 pp.  mathnet  crossref  mathscinet  isi (cited: 1)  scopus (cited: 1);
56. Oleg Lychkovskiy, “A remark on the notion of independence of quantum integrals of motion in the thermodynamic limit”, J. Stat. Phys., 178 (2020), 1028–1038  mathnet  crossref  mathscinet  zmath  adsnasa  isi  scopus (cited: 2);
57. D. A. Kronberg, A. S. Nikolaeva, Yu. V. Kurochkin, A. K. Fedorov, “Quantum soft filtering for the improved security analysis of the coherent one-way quantum-key-distribution protocol”, Phys. Rev. A, 101:3 (2020), 32334 , 7 pp., arXiv: 1910.06167  mathnet  crossref  mathscinet  isi (cited: 5)  scopus (cited: 6);
58. A. S. Avanesov, D. A. Kronberg, “Possibilities of using practical limitations of an eavesdropper in quantum cryptography”, Quantum Electronics, 50:5 (2020), 454–460  mathnet  crossref  isi  elib  scopus
59. D. A. Kronberg, “Role of collective preparation and measurement of states in some quantum communication protocols”, Quantum Electronics, 50:5 (2020), 461–468  mathnet  crossref  isi  elib  scopus
60. A. S. Avanesov, D. A. Kronberg, “On applying pseudorandom number generators in quantum cryptography with coherent states”, AIP Conf. Proc., 2241, 2020, 20026 , 4 pp.  mathnet  crossref  isi  scopus;
61. D. A. Kronberg, “Generalized discrimination between symmetric coherent states for eavesdropping in quantum cryptography”, Lobachevskii J. Math., 41:12 (2020), 2332–2337  mathnet  crossref  mathscinet  isi (cited: 3)  elib  scopus (cited: 3);
62. A. E. Teretenkov, “Dynamics of Moments of Arbitrary Order for Stochastic Poisson Compressions”, Math. Notes, 107:4 (2020), 695–698 , arXiv: 1909.10454  mathnet  crossref  crossref  mathscinet  isi (cited: 2)  elib  scopus (cited: 2)
63. A. E. Teretenkov, “Symplectic analogs of polar decomposition and their applications to bosonic Gaussian channels”, Linear Multilinear Algebra, 2020 (Published online) , arXiv: 1909.00838  mathnet  crossref  isi  scopus; (Published online)
64. Yu. A. Nosal, A. E. Teretenkov, “Exact Dynamics of Moments and Correlation Functions for GKSL Fermionic Equations of Poisson Type”, Math. Notes, 108:6 (2020), 911–915 , arXiv: 2004.12598  mathnet  crossref  crossref  mathscinet  isi (cited: 2)  elib  scopus (cited: 2)
65. A. E. Teretenkov, “Exact Non-Markovian Evolution with Several Reservoirs”, Phys. Part. Nucl., 51:4 (2020), 479–484  mathnet  crossref  mathscinet  isi  elib  scopus
66. A. E. Teretenkov, “One-particle approximation as a simple playground for irreversible quantum evolution”, Discontin. Nonlinearity Complex., 9:4 (2020), 567–577 , arXiv: 1912.13123  mathnet  crossref  adsnasa  scopus (cited: 1);
67. A. E. Teretenkov, “Integral Representation of Finite Temperature non-Markovian Evolution of Some Systems in Rotating Wave Approximation”, Lobachevskii J. Math., 41:12 (2020), 2397–2404 , arXiv: 2003.13993  mathnet  crossref  isi  elib  scopus;
68. I. A. Luchnikov, S. V. Vintskevich, D. A. Grigoriev, S. N. Filippov, “Machine learning non-Markovian quantum dynamics”, Phys. Rev. Lett., 124 (2020), 140502 , 8 pp., arXiv: 1902.07019  mathnet  crossref  adsnasa  isi (cited: 18)  scopus (cited: 21);
69. A. I. Pakhomchik, I. Feshchenko, A. Glatz, V. M. Vinokur, A. V. Lebedev, S. N. Filippov, G. B. Lesovik, “Realization of the Werner–Holevo and Landau–Streater quantum channels for qutrits on quantum computers”, J. Russian Laser Research, 41:1 (2020), 40–53 , arXiv: 1905.05277  mathnet  crossref  adsnasa  isi  scopus;
70. S. N. Filippov, A. N. Glinov, L. Leppäjärvi, “Phase covariant qubit dynamics and divisibility”, Lobachevskii J. Math., 41 (2020), 617–630 , arXiv: 1911.09468  mathnet (cited: 1)  crossref  mathscinet  adsnasa  isi (cited: 7)  scopus (cited: 8);
71. Sergey N. Filippov, Stan Gudder, Teiko Heinosaari, Leevi Leppäjärvi, “Operational restrictions in general probabilistic theories”, Found. Phys., 50 (2020), 850–876 , arXiv: 1912.08538  mathnet  crossref  mathscinet  adsnasa  isi (cited: 6)  scopus (cited: 5);
72. Roberto Grimaudo, Antonino Messina, Alessandro Sergi, Nikolay V. Vitanov, Sergey N. Filippov, “Two-Qubit Entanglement Generation through Non-Hermitian Hamiltonians Induced by Repeated Measurements on an Ancilla”, Entropy, 22 (2020), 1184 , 18 pp., arXiv: 2009.10004  mathnet  crossref  adsnasa  isi (cited: 1)  scopus (cited: 2);
73. V. A. Zhuravlev, S. N. Filippov, “Quantum state tomography via sequential uses of the same informationally incomplete measuring apparatus”, Lobachevskii J. Math., 41:12 (2020), 2405–2414 , arXiv: 2004.00966  mathnet  crossref  adsnasa  isi (cited: 2)  elib  scopus (cited: 3);
74. G. N. Semin, S. N. Filippov, “Issledovanie kvantovoi sistemy, nakhodyascheisya pod vozdeistviem sluchainogo telegrafnogo shuma, na osnove metodov mashinnogo obucheniya”, Trudy 63-i Vserossiiskoi nauchnoi konferentsii MFTI 23–29 noyabrya 2020 goda. Fundamentalnaya i prikladnaya fizika., ISBN 978-5-7417-0754-8 (Moskva – Dolgoprudnyi – Zhukovskii, 23–29 noyabrya 2020 g.), MFTI, 2020, 106–108
75. V. A. Zhuravlev, S. N. Filippov, “Nerazrushayuschie kvantovye izmereniya kubitov”, Trudy 63-i Vserossiiskoi nauchnoi konferentsii MFTI 23–29 noyabrya 2020 goda. Fundamentalnaya i prikladnaya fizika., ISBN 978-5-7417-0754-8 (Moskva – Dolgoprudnyi – Zhukovskii, 23–29 noyabrya 2020 g.), MFTI, 2020, 114–115
76. Dmitry S. Ageev, Sharp disentanglement in holographic charged local quench, 2020 , 22 pp., arXiv: 2003.02918
77. Dmitry S. Ageev, Andrey A. Bagrov, Askar A. Iliasov, “Coleman–Weinberg potential in $p$-adic field theory”, Eur. Phys. J. C, Part. Fields, 80 (2020), 859 , 10 pp., arXiv: 2004.03014  mathnet  crossref  isi  scopus;
78. M. A. Khramtsov, “Spontaneous Symmetry Breaking in the Sachdev–Ye–Kitaev Model”, Phys. Part. Nucl., 51:4 (2020), 557–561  mathnet  crossref  isi  elib  scopus
79. Y. A. Kharkov, V. E. Sotskov, A. A. Karazeev, E. O. Kiktenko, A. K. Fedorov, “Revealing quantum chaos with machine learning”, Phys. Rev. B, 101 (2020), 064406 , 12 pp., arXiv: 1902.09216  mathnet  crossref  isi (cited: 8)  scopus (cited: 10);  zmath
80. E. O. Kiktenko, A. S. Nikolaeva, Peng Xu, G. V. Shlyapnikov, A. K. Fedorov, “Scalable quantum computing with qudits on a graph”, Phys. Rev. A, 101:2 (2020), 22304 , 7 pp., arXiv: 1909.08973  mathnet  crossref  isi (cited: 5)  scopus (cited: 5);
81. Evgeniy O. Kiktenko, Alena S. Mastiukova, Aleksey K. Fedorov, “Protecting quantum systems from decoherence with unitary operations”, Optical Engineering, 59:6 (2020), 61625 , 17 pp.  mathnet  crossref  isi  scopus;
82. Evgeniy O. Kiktenko, Daria N. Kublikova, Aleksey K. Fedorov, “Estimating the precision for quantum process tomography”, Optical Engineering, 59:6 (2020), 61614 , 6 pp.  mathnet  crossref  isi (cited: 2)  scopus (cited: 2);
83. E. O. Kiktenko, A. O. Malyshev, A. S. Mastiukova, V. I. Man'ko, A. K. Fedorov, D. Chruściński, “Probability representation of quantum dynamics using pseudostochastic maps”, Phys. Rev. A, 101 (2020), 52320 , 15 pp., arXiv: 1908.03404  mathnet  crossref  mathscinet  isi (cited: 5)  scopus (cited: 8);
84. E. O. Kiktenko, A. O. Malyshev, M. A. Gavreev, A. A. Bozhedarov, Nikolay O. Pozhar, Maxim N. Anufriev, A. K. Fedorov, “Lightweight authentication for quantum key distribution”, IEEE Trans. Information Theory, 66:9 (2020), 6354–6368 , arXiv: 1903.10237  mathnet  crossref  mathscinet  isi  scopus (cited: 2); (Published online)
85. V. I. Yashin, E. O. Kiktenko, A. S. Mastiukova, A. K. Fedorov, “Minimal informationally complete measurements for probability representation of quantum dynamics”, New J. Phys., 22 (2020), 103026 , 23 pp., arXiv: 2006.13727  mathnet  crossref  mathscinet  isi  scopus;
86. A. S. Mastiukova, M. A. Gavreev, E. O. Kiktenko, A. K. Fedorov, “Tomographic and Entropic Analysis of Modulated Signals”, Optics and Spectroscopy, 128:7 (2020), 902–908  mathnet  crossref  isi  elib  scopus
87. Igor Ermakov, Tim Byrnes, “Time dynamics of Bethe ansatz solvable models”, Phys. Rev. B, 101 (2020), 54305 , 8 pp., arXiv: 1905.03515  mathnet  crossref  isi (cited: 2)  scopus (cited: 2);
88. Amaury Dodel, Alexander Pikovski, Igor Ermakov, Marek Narozniak, Valentin Ivannikov, Haibin Wu, Tim Byrnes, “Cooper pair polaritons in cold fermionic atoms within a cavity”, Phys. Rev. Research, 2 (2020), 131184 , 10 pp., arXiv: 1912.04440  mathnet  crossref  isi (cited: 1)  scopus (cited: 1);

   2019
89. Gerard McCaul, Alexander Pechen, Denys I. Bondar, “Entropy nonconservation and boundary conditions for Hamiltonian dynamical systems”, Phys. Rev. E, 99:6 (2019), 062121 , 9 pp., arXiv: 1904.03473  mathnet  crossref  mathscinet  isi (cited: 1)  scopus (cited: 1)
90. O. V. Morzhin, A. N. Pechen, “Krotov method for optimal control of closed quantum systems”, Russian Math. Surveys, 74:5 (2019), 851–908 , arXiv: 1809.09562  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 7)  elib  scopus (cited: 6)
91. O. V. Morzhin, A. N. Pechen, “Maximization of the overlap between density matrices for a two-level open quantum system driven by coherent and incoherent controls”, Lobachevskii J. Math., 40:10 (2019), 1532–1548 rdcu.be/b8DB9  mathnet (cited: 1)  crossref  mathscinet  zmath  isi (cited: 6)  scopus (cited: 7)
92. K. A. Lyakhov, A. N. Pechen, “Basic Vacuum Pump System Prerequisites for Boron Isotopes Separation by the Laser Assisted Retardation of Condensation (SILARC) method”, Physical and Chemical Processes in Atomic Systems, XVII International Scientific Conference and School of Young Scholars (Moscow, Russia, 2019, Oct’28-30), NRNU MEPhI, 2019, 67 https://pnasc.mephi.ru/wp-content/uploads/2019/10/tp_final.pdf
93. K. A. Lyakhov, A. N. Pechen, H. J. Lee, “Optimal CO2 laser system design for 11BCl3 excitation by the method of selective laser assisted retardation of condensation”, J. Electr. Eng. Electron. Technol., 8 (2019), 86  mathnet  crossref;
94. O. V. Morzhin, A. N. Pechen, “Time Optimal Coherent and Incoherent Control of Two–Level Open Quantum Systems”, Abstracts of The First International Conference “Mathematical Physics, Dynamical Systems, Infinite-Dimensional Analysis” (MIPT, Dolgoprudny, Russia, June 17–21, 2019), 2019, 63 https://mipt.ru/education/chair/mathematics/conf/matematicheskaya-fizika-dinamicheskie-sistemy/book-of-abstracts.php
95. F. Uskov, O. Lychkovskiy, “A variational lower bound on the ground state of a many-body system and the squaring parametrization of density matrices”, JPCS, 1163 (2019), 12057 , 9 pp., arXiv: 1902.09246  mathnet  crossref  isi  scopus (cited: 3)
96. A. S. Avanesov, D. A. Kronberg, “Coherent-state quantum cryptography using pseudorandom number generators”, Quantum Electronics, 49:10 (2019), 974–981  mathnet  crossref  mathscinet  mathscinet  isi (cited: 3)  elib  scopus (cited: 3)
97. D. A. Kronberg, “Coherence of quantum ensemble as a dual to uncertainty for a single observable”, Lobachevskii J. Math., 40:10 (2019), 1507–1515  mathnet  crossref  mathscinet  zmath  isi (cited: 2)  scopus (cited: 3)
98. A. E. Teretenkov, “Dynamics of Moments for Quadratic GKSL Generators”, Math. Notes, 106:1 (2019), 151–155 , arXiv: 1909.10454  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 6)  elib  scopus (cited: 8)
99. A. E. Teretenkov, “Pseudomode Approach and Vibronic Non-Markovian Phenomena in Light-Harvesting Complexes”, Proc. Steklov Inst. Math., 306 (2019), 242–256 , arXiv: 1904.01430  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 8)  elib  scopus (cited: 8)
100. A. E. Teretenkov, “Non-Markovian evolution of multi-level system interacting with several reservoirs. Exact and approximate”, Lobachevskii J. Math., 40:10 (2019), 1587–1605 , arXiv: 1904.07365  mathnet (cited: 2)  crossref  mathscinet  zmath  isi (cited: 5)  scopus (cited: 6);  mathscinet
101. A. E. Teretenkov, “Irreversible quantum evolution with quadratic generator: Review”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 22:4 (2019), 19300019 , 26 pp., arXiv: 1912.13083  mathnet  crossref  mathscinet  isi (cited: 7)  scopus (cited: 8);
102. I. A. Luchnikov, S. V. Vintskevich, H. Ouerdane, S. N. Filippov, “Simulation Complexity of Open Quantum Dynamics: Connection with Tensor Networks”, Phys. Rev. Lett., 122:16 (2019), 160401 , 7 pp., arXiv: 1812.00043  mathnet  crossref  adsnasa  isi (cited: 32)  scopus (cited: 32)
103. S. Filippov, “Quantum Sinkhorn’s theorem: Applications in entanglement dynamics, channel capacities, and compatibility theory”, Mathematical Aspects in Current Quantum Information Theory 2019 (MAQIT 2019) (Seoul, Korea, May 20-24, 2019), Seoul National University, 2019, 7–8
104. Sergey N. Filippov, Ksenia V. Kuzhamuratova, “Quantum informational properties of the Landau–Streater channel”, J. Math. Phys., 60:4 (2019), 42202 , 16 pp., arXiv: 1803.02572  mathnet  crossref  mathscinet  adsnasa  isi (cited: 5)  scopus (cited: 5)
105. S. N. Filippov, “Complete positivity and positivity of quantum dynamical maps under time deformations”, The first international conference “Mathematical Physics, Dynamical Systems, Infinite-Dimensional Analysis”. Book of Abstracts, ISBN 9785604118740 (Dolgoprudny, Russia, 17–21 June, 2019), Moscow Institute of Physics and Technology, 2019, 29
106. G. N. Semin, S. N. Filippov, A. N. Pechen, “Comparison of the low density limit and collision model for open quantum dynamics”, The first international conference “Mathematical Physics, Dynamical Systems, Infinite-Dimensional Analysis”. Book of Abstracts, ISBN 9785604118740 (Dolgoprudny, Russia, 17–21 June, 2019), Moscow Institute of Physics and Technology, 2019, 80  mathscinet
107. A. N. Glinov, S. N. Filippov, “Quantitative description of correlations accompanying non-Markovian quantum dynamics under mixing of Markovian processes”, The first international conference “Mathematical Physics, Dynamical Systems, Infinite-Dimensional Analysis”. Book of Abstracts, ISBN 9785604118740 (Dolgoprudny, Russia, 17–21 June, 2019), Moscow Institute of Physics and Technology, 2019, 31
108. S. N. Filippov, “On quantum operations of photon subtraction and photon addition”, Lobachevskii J. Math., 40:10 (2019), 1470–1478 , arXiv: 1908.02207  mathnet  crossref  mathscinet  zmath  isi  scopus
109. S. V. Vintskevich, D. A. Grigoriev, S. N. Filippov, “Effect of an incoherent pump on two-mode entanglement in optical parametric generation”, Phys. Rev. A, 100 (2019), 53811 , 18 pp., arXiv: 1905.05756  mathnet  crossref  adsnasa  isi (cited: 2)  scopus (cited: 2)
110. Ilia A. Luchnikov, Alexander Ryzhov, Pieter-Jan Stas, Sergey N. Filippov, Henni Ouerdane, “Variational autoencoder reconstruction of complex many-body physics”, Entropy, 21 (2019), 1091 , 22 pp., arXiv: 1910.03957  mathnet  crossref  mathscinet  adsnasa  isi (cited: 7)  scopus (cited: 9)
111. A. N. Glinov, S. N. Filippov, “Dinamika zaputannosti polyarizatsionnykh fotonov pod vliyaniem asimmetrichnykh poter”, Trudy 62-i Vserossiiskoi nauchnoi konferentsii MFTI. 18-24 noyabrya 2019 goda. Fundamentalnaya i prikladnaya fizika, ISBN 978-5-7417-0729-6 (Moskva – Dolgoprudnyi – Zhukovskii, 18-24 noyabrya 2019 goda.), MFTI, 2019, 384–386
112. I. A. Luchnikov, G. N. Semin, S. N. Filippov, “Rekonstruktsiya nemarkovskoi dinamiki otkrytoi kvantovoi sistemy metodami mashinnogo obucheniya”, Trudy 62-i Vserossiiskoi nauchnoi konferentsii MFTI. 18-24 noyabrya 2019 goda. Fundamentalnaya i prikladnaya fizika, ISBN 978-5-7417-0729-6 (Moskva – Dolgoprudnyi – Zhukovskii, 18-24 noyabrya 2019 goda), MFTI, 2019, 393–394
113. A. A. Melnikov, S. N. Filippov, “Eksperimentalnaya realizatsiya kvantovoi psevdotelepaticheskoi igry na kvantovom kompyutere”, Trudy 62-i Vserossiiskoi nauchnoi konferentsii MFTI. 18-24 noyabrya 2019 goda. Fundamentalnaya i prikladnaya fizika., ISBN 978-5-7417-0729-6 (Moskva – Dolgoprudnyi – Zhukovskii, 18-24 noyabrya 2019 goda), MFTI, 2019, 396–397
114. V. A. Zhuravlev, S. N. Filippov, “Realizatsiya simmetrichnoi informatsionno-polnoi kvantovoi nablyudaemoi na kvantovom kompyutere”, Trudy 62-i Vserossiiskoi nauchnoi konferentsii MFTI. 18-24 noyabrya 2019 goda. Fundamentalnaya i prikladnaya fizika, ISBN 978-5-7417-0729-6 (Moskva – Dolgoprudnyi – Zhukovskii, 18-24 noyabrya 2019 goda), MFTI, 2019, 397–399
115. Dmitry S. Ageev, Irina Ya. Aref'eva, “When things stop falling, chaos is suppressed”, JHEP, 2019:1 (2019), 100 , 9 pp., arXiv: 1806.05574  mathnet  crossref  mathscinet  isi (cited: 8)  scopus (cited: 8)
116. D. S. Ageev, I. Ya. Aref'eva, A. V. Lysukhina, “Wormholes in Jackiw–Teitelboim gravity”, Theoret. and Math. Phys., 201:3 (2019), 1779–1792  mathnet  crossref  crossref  mathscinet  adsnasa  adsnasa  isi  elib  scopus
117. Dmitry S. Ageev, Holographic complexity of local quench at finite temperature, 2019 , 17 pp., arXiv: 1902.03632
118. Dmitry S. Ageev, On the entanglement and complexity contours of excited states in the holographic CFT, 2019 , 17 pp., arXiv: 1905.06920
119. D. S. Ageev, “Holographic complexity of local quench at finite temperature”, Phys. Rev. D, 100:12 (2019), 126005 , 10 pp., arXiv: 1902.03632  mathnet  crossref  mathscinet  isi (cited: 6)  scopus (cited: 6)
120. Irina Arefeva, Mikhail Khramtsov, Maria Tikhanovskaya, Igor Volovich, “Replica-nondiagonal solutions in the SYK model”, JHEP, 7 (2019), 113 , 59 pp., arXiv: 1811.04831  mathnet  crossref  mathscinet  zmath  isi (cited: 16)  scopus (cited: 17)
121. I. Ya. Aref'eva, I. V. Volovich, M. A. Khramtsov, “Revealing nonperturbative effects in the SYK model”, Theoret. and Math. Phys., 201:2 (2019), 1583–1603  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 3)  elib  scopus (cited: 3)
122. A. A. Zhukov, E. O. Kiktenko, A. A. Elistratov, W. V. Pogosov, Yu. E. Lozovik, “Quantum communication protocols as a benchmark for programmable quantum computers”, Quantum Inf. Process., 18:1 (2019), 31–23 , arXiv: 1812.00587  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 6)  scopus (cited: 7)
123. V. E. Rodimin, E. O. Kiktenko, V. V. Usova, M. Y. Ponomarev, T. V. Kazieva, A. V. Miller, A. S. Sokolov, A. A. Kanapin, A. V. Losev, A. S. Trushechkin, M. N. Anufriev, N. O. Pozhar, V. L. Kurochkin, Y. V. Kurochkin, A. K. Fedorov, “Modular quantum key distribution setup for research and development applications”, J. Russian Laser Research, 40:3 (2019), 221–229 , arXiv: 1612.04168  mathnet  crossref  adsnasa  isi (cited: 2)  scopus (cited: 4)
124. A. K. Fedorov, A. V. Akimov, J. D. Biamonte, A. V. Kavokin, F. Ya. Khalili, E. O. Kiktenko, N. N. Kolachevsky, Y. V. Kurochkin, A. I. Lvovsky, A. N. Rubtsov, G. V. Shlyapnikov, S. S. Straupe, A. V. Ustinov, A. M. Zheltikov, “Quantum technologies in Russia”, Quantum Sci. Technol., 4 (2019), 040501 , 8 pp.  mathnet  crossref  isi (cited: 4)  scopus (cited: 6)
125. Andrey Koziy, Ilya Mishchenko, Vladislav Alekhin, Roman Larin, Evgeny Kiktenko, “Developing specialized software for investigating interference in complex optical systems”, JPCS, 1348:1 (2019), 012095 , 6 pp.  mathnet  crossref  scopus;
126. A. V. Kashnikov, A. A. Gusmanova, E. O. Kiktenko, “Demonstration of special relativity effects with specialized software”, JPCS, 1348:1 (2019), 012092 , 6 pp.  mathnet  crossref  scopus (cited: 1);

   2018
127. N. B. Il'in, A. N. Pechen', “Critical point in the problem of maximizing the transition probability using measurements in an $n$-level quantum system”, Theoret. and Math. Phys., 194:3 (2018), 384–389  mathnet  crossref  crossref  mathscinet  adsnasa  adsnasa  isi  elib  scopus
128. N. B. Ilin, A. N. Pechen, “Conditions for the absence of local extrema in problems of quantum coherent control”, Proc. Steklov Inst. Math., 301 (2018), 109–113  mathnet  crossref  crossref  mathscinet  isi (cited: 2)  elib  elib  scopus (cited: 3)
129. A. S. Avanesov, D. A. Kronberg, A. N. Pechen, “Active beam splitting attack applied to differential phase shift quantum key distribution protocol”, P-Adic Numbers Ultrametric Anal. Appl., 10:3 (2018), 222–232 , arXiv: 1910.08339  mathnet  crossref  mathscinet  isi (cited: 9)  scopus (cited: 9)
130. K. A. Lyakhov, A. N. Pechen, H.-J. Lee, “The efficiency of one-line versus multi-line excitation of boron isotopes within the method of selective laser assisted retardation of condensation”, AIP Advances, 8:9 (2018), 95325 , 10 pp.  mathnet  crossref  isi (cited: 7)  scopus (cited: 8)
131. A. N. Pechen, “Some Methods of Construction of Controls for Quantum Systems”, Quantum probability, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 151, VINITI, Moscow, 2018, 67–72  mathnet  mathscinet  mathscinet
132. K. A. Lyakhov, A. N. Pechen, “Objective Function in the Problem of Optimal Laser-Assisted Separation of Isotopes by the Method of Selective Retardation of Condensation”, Quantum probability, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 151, VINITI, Moscow, 2018, 62–66  mathnet  mathscinet  mathscinet
133. A. N. Pechen, “International Congress of Mathematicians 2018 : from Rio de Janeiro to St. Petersburg”, Russian Math. Surveys, 73:6 (2018), 1145–1153  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
134. N. Il'in, E. Shpagina, F. Uskov, O. Lychkovskiy, “Squaring parametrization of constrained and unconstrained sets of quantum states”, J. Phys. A, 51 (2018), 85301 , 19 pp., arXiv: 1704.03861  mathnet  crossref  mathscinet  isi (cited: 8)  scopus (cited: 8)
135. Oleg Lychkovskiy, Oleksandr Gamayun, Vadim Cheianov, “Quantum many-body adiabaticity, topological Thouless pump and driven impurity in a one-dimensional quantum fluid”, AIP Conf. Proc., AIP Conf. Proc., 1936, no. 1, 2018, 20024 , 6 pp., arXiv: 1711.05547  mathnet  crossref  isi  scopus (cited: 7)
136. Oleksandr Gamayun, Oleg Lychkovskiy, Evgeni Burovski, Matthew Malcomson, Vadim V. Cheianov, Mikhail B. Zvonarev, “Impact of the Injection Protocol on an Impurity’s Stationary State”, Phys. Rev. Lett., 120:22 (2018), 220605 , 6 pp.  mathnet  crossref  isi  scopus (cited: 21)
137. Vera V. Vyborova, Oleg Lychkovskiy, Alexey N. Rubtsov, “Droplet formation in a one-dimensional system of attractive spinless fermions”, Phys. Rev. B, 98 (2018), 235407  mathnet  crossref  isi  scopus (cited: 4)
138. Oleg Lychkovskiy, Oleksandr Gamayun, Vadim Cheianov, “Necessary and sufficient condition for quantum adiabaticity in a driven one-dimensional impurity-fluid system”, Phys. Rev. B, 98 (2018), 024307  mathnet  crossref  isi  scopus (cited: 8)
139. Oleg Lychkovskiy, “A necessary condition for quantum adiabaticity applied to the adiabatic Grover search”, J. Russian Laser Research, 39:6 (2018), 552–557  mathnet  crossref  isi  scopus (cited: 2)
140. D. A. Kronberg, Yu. V. Kurochkin, “Role of intensity fluctuations in quantum cryptography with coherent states”, Quantum Electron., 48:9 (2018), 843–848  mathnet  mathnet  crossref  isi (cited: 7)  elib  elib  scopus (cited: 7)
141. S. N. Filippov, “Quantum dynamics induced by selective measurements”, Mikro- i nanoelektronika - 2018: Trudy mezhdunarodnoi konferentsii (g. Zvenigorod, 1-5 oktyabrya g. 2018), eds. V.F. Lukichev, K.V. Rudenko, MAKS Press, Moskva, 2018, 152
142. S. N. Filippov, “Implications of quantum Sinkhorns theorem”, 14th Biennial IQSA Conference “Quantum Structures 2018”. Conference booklet (July 16–20, 2018, Kazan, Russia), Kazan Federal University, 2018, 26–27
143. S. N. Filippov, “Quantum Sinkhorns theorem and quantum communication”, 50th Symposium on Mathematical Physics. Book of abstracts (June 21–24, 2018, Torun, Poland), Nicolaus Copernicus University, 2018, 20

   2021
144. S. N. Filippov, “Tensor products of quantum mappings”, Journal of Mathematical Sciences, 252:1 (2021), 116–124  mathnet  crossref  mathscinet  scopus (cited: 1)

   2018
145. S. N. Filippov, K. Yu. Magadov, “Spin polarization-scaling quantum maps and channels”, Lobachevskii J. Math., 39:1 (2018), 65–70 , arXiv: 1907.11878  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 4)  scopus (cited: 4)
146. Sergey N. Filippov, Vladimir V. Frizen, Daria V. Kolobova, “Ultimate entanglement robustness of two-qubit states against general local noises”, Phys. Rev. A, 97 (2018), 12322 , 9 pp., arXiv: 1708.08208  mathnet  crossref  adsnasa  isi (cited: 12)  scopus (cited: 13)
147. Sergey N. Filippov, Teiko Heinosaari, Leevi Leppäjärvi, “Simulability of observables in general probabilistic theories”, Phys. Rev. A, 97 (2018), 62102 , 19 pp., arXiv: 1803.11006  mathnet  crossref  adsnasa  isi (cited: 13)  scopus (cited: 13)
148. Sergey N. Filippov, Dariusz Chruscinski, “Time deformations of master equations”, Phys. Rev. A, 98 (2018), 22123 , 6 pp., arXiv: 1803.09980  mathnet  crossref  adsnasa  isi (cited: 12)  scopus (cited: 12)
149. Sergey N. Filippov, “Lower and upper bounds on nonunital qubit channel capacities”, Rep. Math. Phys., 82:2 (2018), 149–159 , arXiv: 1802.00646  mathnet  crossref  mathscinet  adsnasa  isi (cited: 7)  scopus (cited: 8)
150. G. N. Semin, S. N. Filippov, A. N. Pechen, “Sravnenie modeli stolknovenii i predela nizkoi plotnosti dlya dinamiki otkrytykh kvantovykh sistem”, Trudy 61-i Vserossiiskoi nauchnoi konferentsii MFTI. 19–25 noyabrya 2018 goda. Fundamentalnaya i prikladnaya fizika, ISBN 978-5-7417-0687-9 (Moskva – Dolgoprudnyi – Zhukovskii, 19–25 noyabrya 2018 g.), MFTI, 2018, 350–352
151. S. N. Filippov, “Evaluation of non-unital qubit channel capacities”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 160, no. 2, Izd-vo Kazanskogo un-ta, Kazan, 2018, 258–265  mathnet  mathscinet  isi  elib
152. A. N. Glinov, S. N. Filippov, “Kolichestvennoe opisanie korrelyatsii, soprovozhdayuschikh nemarkovskuyu kvantovuyu dinamiku pri smeshivanii markovskikh protsessov”, Trudy 61-i Vserossiiskoi nauchnoi konferentsii MFTI. 19–25 noyabrya 2018 goda. Fundamentalnaya i prikladnaya fizika, ISBN 978-5-7417-0687-9 (Moskva – Dolgoprudnyi – Zhukovskii, 19–25 noyabrya 2018 g.), MFTI, 2018, 347–349
153. S. V. Vintskevich, S. N. Filippov, “Vliyanie svoistv neklassicheskogo smeshannogo sostoyaniya nakachki na svoistva zaputannosti fotonov v protsesse parametricheskoi generatsii”, ISBN 978-5-7417-0687-9, Trudy 61-i Vserossiiskoi nauchnoi konferentsii MFTI. 19–25 noyabrya 2018 goda. Fundamentalnaya i prikladnaya fizika (Moskva – Dolgoprudnyi – Zhukovskii, 19–25 noyabrya 2018 g.), MFTI, 2018, 352
154. D. S. Ageev, I. Ya. Aref'eva, “Holographic non-equilibrium heating”, JHEP, 2018:3 (2018), 103 , 19 pp., arXiv: 1704.07747  mathnet  crossref  mathscinet  isi (cited: 8)  scopus (cited: 6)
155. D. S. Ageev, I. Ya. Aref'eva, A. A. Golubtsova, E. Gourgoulhon, “Thermalization of holographic Wilson loops in spacetimes with spatial anisotropy”, Nuclear Phys. B, 931 (2018), 506–536  mathnet  crossref  mathscinet  isi (cited: 8)  scopus (cited: 8)
156. Dmitry Ageev, “Holography, quantum complexity and quantum chaos in different models”, 20th International Seminar on High Energy Physics (QUARKS-2018) (Valday, Russia, 27 May – 02 June, 2018), EPJ Web of Conf., 2018, 06006 , 8pp pp.  mathnet  crossref  isi (cited: 3)  scopus (cited: 3)
157. Dmitry Ageev, Irina Aref'eva, Andrey Bagrov, Mikhail I. Katsnelson, “Holographic local quench and e ective complexity”, JHEP, 2018:8 (2018), 71 , 30 pp., arXiv: 1803.11162  mathnet  crossref  mathscinet  zmath  isi (cited: 23)  scopus (cited: 24)
158. Irina Aref`eva, Mikhail Khramtsov, Maria Tikhanovskaya, “On $1/N$ diagrammatics in the SYK model beyond the conformal limit”, 20th International Seminar on High Energy Physics QUARKS-2018 (Valday, Russia, 27 May - 02 June, 2018), EPJ Web of Conferences, EPJ Web of Conf., 191, 2018, 06008 , 8 pp. https://doi.org/10.1051/epjconf/201819106008, arXiv: 1811.04837  mathnet  crossref  isi (cited: 1)  scopus (cited: 1)
159. Irina Aref`eva, Mikhail Khramtsov, Maria Tikhanovskaya, Igor Volovich, “On replica-nondiagonal large $N$ saddles in the SYK model”, 20th International Seminar on High Energy Physics (QUARKS-2018) (Valday, Russia, 27 May - 02 June, 2018), EPJ Web of Conferences, EPJ Web of Conf., 191, 2018, 6007 , 8 pp. https://doi.org/10.1051/epjconf/201819106007  mathnet  crossref  isi (cited: 3)  scopus (cited: 4)
160. A. S. Trushechkin, P. A. Tregubov, E. O. Kiktenko, Yu. V. Kurochkin, A. K. Fedorov, “Quantum-key-distribution protocol with pseudorandom bases”, Phys. Rev. A, 2018, 97 (2018), 12311 , 15 pp., arXiv: 1706.00611  mathnet  crossref  mathscinet  isi (cited: 9)  scopus (cited: 9)
161. A. V. Duplinskiy, E. O. Kiktenko, N. O. Pozhar, M. N. Anufriev, R. P. Ermakov, A. I. Kotov, A. V. Brodskiy, R. R. Yunusov, V. L. Kurochkin, A. K. Fedorov, Y. V. Kurochkin, “Quantum-Secured Data Transmission in Urban Fiber-Optics Communication Lines”, J. Russian Laser Research, 39:2 (2018), 113–119 , arXiv: 1712.09831  mathnet  crossref  adsnasa  isi (cited: 6)  scopus (cited: 6)
162. E. O. Kiktenko, N. O. Pozhar, M. N. Anufriev, A. S. Trushechkin, R. R. Yunusov, Yu. V. Kurochkin, A. I. Lvovsky, A. K. Fedorov, “Quantum-secured blockchain”, Quantum Sci. Technol., 3:3 (2018), 35004 , 8 pp., arXiv: 1705.09258  mathnet  crossref  isi (cited: 67)  scopus (cited: 68)
163. A. K. Fedorov, E. O. Kiktenko, A. S. Trushechkin, “Symmetric Blind Information Reconciliation and Hash-function-based Verification for Quantum Key Distribution”, Lobachevskii J. Math., 39:7 (2018), 992–996 , arXiv: 1705.06664  mathnet (cited: 1)  crossref  mathscinet  zmath  adsnasa  isi (cited: 7)  scopus (cited: 5)
164. Alexey K. Fedorov, Evgeniy O. Kiktenko, Alexander I. Lvovsky, “Quantum computers put blockchain security at risk”, Nature, 563 (2018), 465–467  mathnet  crossref  mathscinet  isi (cited: 22)  scopus (cited: 18)
165. E. O. Kiktenko, A. O. Malyshev, A. A. Bozhedarov, N. O. Pozhar, M. N. Anufriev, A. K. Fedorov, “Error Estimation at the Information Reconciliation Stage of Quantum Key Distribution”, J. Russian Laser Research, 39:6 (2018), 558–567 , arXiv: 1810.05841  mathnet  crossref  mathscinet  adsnasa  isi (cited: 5)  scopus (cited: 8)
166. S. Korotaev, N. Budnev, V. Serdyuk, E. Kiktenko, J. Gorohov, V. Zurbanov, “Macroscopic entanglement and time reversal causality by data of the Baikal Experiment”, JPCS, 1051 (2018), 12019 , 12 pp.  mathnet  crossref  isi  scopus (cited: 3)

   2021
167. E. O. Kiktenko, “Asymmetry of Locally Available and Locally Transmitted Information in Thermal Two-Qubit States”, J. Math. Sci. (N. Y.), 252:1 (2021), 43–59  mathnet  crossref  mathscinet  zmath  scopus

   2018
168. Igor Ermakov, Tim Byrnes, Nikolay Bogoliubov, “High-accuracy energy formulas for the attractive two-site Bose–Hubbard model”, Phys. Rev. A, 97:2 (2018), 023626 , 11 pp., arXiv: 1708.08696  mathnet  crossref  isi (cited: 1)  scopus (cited: 1)

   2017
169. A. N. Pechen, N. B. Ilin, “Control landscape for ultrafast manipulation by a qubit”, Journal of Physics A: Mathematical and Theoretical, 50:7 (2017), 75301 , 14 pp., arXiv: 1909.09216  mathnet  crossref  mathscinet  isi (cited: 6)  scopus (cited: 7)
170. K. A. Lyakhov, H. J. Lee, A. N. Pechen, “Some issues of industrial scale boron isotopes separation by the laser assisted retarded condensation (SILARC) method”, Separation and Purification Technology, 176:4 (2017), 402–411  mathnet  crossref  isi (cited: 15)  scopus (cited: 17)

   2019
171. A. N. Pechen’, “Some mathematical problems of control of quantum systems”, Journal of Mathematical Sciences, 241:2 (2019), 185–190  mathnet  crossref  mathscinet  mathscinet  zmath  scopus (cited: 1)
172. N. B. Il’yn, A. N. Pechen’, “Discrete approximations of dynamical quantum Zeno effect”, Journal of Mathematical Sciences, 241:2 (2019), 158–167  mathnet  crossref  mathscinet  zmath  scopus

   2017
173. O. V. Morzhin, “Nonlocal Improvement of Controls in Nonlinear Discrete Systems”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 19:1 (2017), 150–163 (Title, abstract, key words, and references are given in Russian and English)  mathnet  crossref  mathscinet  zmath  isi  elib
174. Oleg Lychkovskiy, Oleksandr Gamayun, Vadim Cheianov, “Time scale for adiabaticity breakdown in driven many-body systems and orthogonality catastrophe”, Phys. Rev. Lett., 119 (2017), 200401 , 6 pp., arXiv: 1611.00663  mathnet  crossref  mathscinet  isi  scopus (cited: 18)
175. Oleg Lychkovskiy, Decoherence at the level of eigenstates, 2017 , arXiv: 1712.04384
176. D. A. Kronberg, E. O. Kiktenko, A. K. Fedorov, Yu. V. Kurochkin, “Analysis of coherent quantum cryptography protocol vulnerability to an active beam-splitting attack”, Quantrum Electron., 47:2 (2017), 163–168  mathnet  crossref  mathscinet  isi (cited: 5)  elib  scopus (cited: 5)
177. D. A. Kronberg, “New methods of error correction in quantum cryptography using low-density parity-check codes”, Matem. vopr. kriptogr., 8:2 (2017), 77–86  mathnet (cited: 2)  crossref  mathscinet  elib
178. Math. Notes, 101:2 (2017), 341–351  mathnet  crossref  mathscinet  isi (cited: 8)  elib  scopus (cited: 9)
179. S. V. Kozyrev, A. A. Mironov, A. E. Teretenkov, I. V. Volovich, “Flows in nonequilibrium quantum systems and quantum photosynthesis”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 20:4 (2017), 1750021 , 19 pp., arXiv: 1612.00213  mathnet (cited: 4)  crossref  mathscinet  isi (cited: 11)  scopus (cited: 12)
180. A. E. Teretenkov, “Quadratic Fermionic Dynamics with Dissipation”, Math. Notes, 102:6 (2017), 846–854  mathnet  crossref  crossref  isi (cited: 7)  elib  scopus (cited: 8)
181. Grigori G. Amosov, Sergey N. Filippov, “Spectral properties of reduced fermionic density operators and parity superselection rule”, Quantum Inf. Process., 16:1 (2017), 2 , 16 pp.  mathnet  crossref  mathscinet  isi (cited: 15)  scopus (cited: 20)
182. S. N. Filippov, “Ultimate entanglement robustness against general local noises”, Book of abstracts. XV International Conference on Quantum Optics and Quantum Information (November 20–23, 2017, Minsk, Belarus), B. I. Stepanov Institute of Physics, 2017, 73-74
183. S. N. Filippov, “Ultimate completely positive divisibility and eternal indivisibility of dynamical maps in collisional models”, 24th Central European Workshop on Quantum Optics. Book of abstracts (26–30 June, 2017, Lyngby, Denmark), Technical University of Denmark, 2017, 97
184. D. V. Kolobova, V. V. Frizen, S. N. Filippov, “Dekompozitsiya neunitalnykh kubitnykh kanalov i ustoichivost dvukhkubitnykh stseplennykh sostoyanii”, Mezhdunarodnaya matematicheskaya konferentsiya po teorii funktsii, posvyaschënnaya 100-letiyu chl.-korr. AN SSSR A.F. Leonteva: sbornik tezisov (g. Ufa, 24–27 maya 2017 g.), eds. R. N. Garifullin, RITs BashGU, Ufa, 2017, 87–88
185. S. N. Filippov, “Ultimate completely positive divisibility of dynamical maps”, International Mathematical Conference on Function Theory dedicated to the centenary of Corresponding member of USSR Academy of Sciences A.F. Leontev. Book of Abstracts, ISBN 978-5-7477-4392-2 (Ufa, May 24–27, 2017), RITS BashSU, Ufa, 2017, 182–183
186. Sergey N. Filippov, “Quantum dynamics intervened by repeated nonselective measurements”, Int. J. Quantum Inf., 15:8 (2017), 1740027 , 10 pp., arXiv: 1801.05160  mathnet  crossref  mathscinet  zmath  adsnasa  isi
187. S. N. Filippov, J. Piilo, S. Maniscalco, M. Ziman, “Divisibility of quantum dynamical maps and collision models”, Phys. Rev. A, 95 (2017), 32111 , 13 pp., arXiv: 1708.04994  mathnet  crossref  mathscinet  adsnasa  isi (cited: 42)  scopus (cited: 43)
188. S. N. Filippov, K. Yu. Magadov, M. A. Jivulescu, “Absolutely separating quantum maps and channels”, New J. Phys., 19 (2017), 83010 , 19 pp., arXiv: 1703.00344  mathnet  crossref  mathscinet  adsnasa  isi (cited: 9)  scopus (cited: 11)
189. Sergey N. Filippov, Teiko Heinosaari, Leevi Leppäjärvi, “Necessary condition for incompatibility of observables in general probabilistic theories”, Phys. Rev. A, 95 (2017), 32127 , 8 pp., arXiv: 1609.08416  mathnet  crossref  adsnasa  isi (cited: 10)  scopus (cited: 12)
190. I. A. Luchnikov, S. N. Filippov, “Quantum evolution in the stroboscopic limit of repeated measurements”, Phys. Rev. A, 95 (2017), 22113 , 9 pp., arXiv: 1609.05501  mathnet  crossref  adsnasa  isi (cited: 16)  scopus (cited: 17)
191. Fabio Benatti, Dariusz Chruściński, Sergey Filippov, “Tensor power of dynamical maps and positive versus completely positive divisibility”, Phys. Rev. A, 95 (2017), 12112 , 5 pp., arXiv: 1610.04634  mathnet  crossref  mathscinet  adsnasa  isi (cited: 19)  scopus (cited: 20)
192. Sergey N. Filippov, Kamil Yu. Magadov, “Positive tensor products of qubit maps and n-tensor-stable positive qubit maps”, J. Phys. A, 50 (2017), 55301 , 21 pp., arXiv: 1604.01716  mathnet  crossref  mathscinet  adsnasa  isi (cited: 10)  scopus (cited: 12)

   2019
193. S. N. Filippov, “Quantum mappings and characterization of entangled quantum states”, Journal of Mathematical Sciences, 241:2 (2019), 210–236  mathnet  crossref  mathscinet  zmath  scopus (cited: 9)

   2017
194. D. S. Ageev, I. Ya. Aref'eva, “Waking and scrambling in holographic heating up”, Theoret. and Math. Phys., 193:1 (2017), 1534–1546  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 4)  elib  scopus (cited: 3)
195. Irina Ya. Aref'eva, Mikhail A. Khramtsov, Maria D. Tikhanovskaya, “Thermalization after holographic bilocal quench”, JHEP, 9 (2017), 115 , 66 pp., arXiv: 1706.07390  mathnet (cited: 1)  crossref  mathscinet  isi (cited: 20)  scopus (cited: 19)
196. A. S. Trushechkin, E. O. Kiktenko, A. K. Fedorov, “Practical issues in decoy-state quantum key distribution based on the central limit theorem”, Phys. Rev. A, 96:2 (2017) , 7 pp., arXiv: 1702.08531  mathnet (cited: 1)  crossref  isi (cited: 11)  scopus (cited: 11)
197. E. O. Kiktenko, N. O. Pozhar, A. V. Duplinskiy, A. A. Kanapin, A. S. Sokolov, S. S. Vorobey, A. V. Miller, V. E. Ustimchik, M. N. Anufriev, A. S. Trushechkin, R. R. Yunusov, V. L. Kurochkin, Yu. V. Kurochkin, A. K. Fedorov, “Demonstration of a quantum key distribution network in urban fibre-optic communication lines”, Quantum Electron., 47:9 (2017), 798–802 , arXiv: 1705.07154  mathnet  crossref  isi (cited: 16)  elib  elib  scopus (cited: 16)
198. E. O. Kiktenko, A. S. Trushechkin, S. S. W. Lim, Y. V. Kurochkin, A. K. Fedorov, “Symmetric blind information reconciliation for quantum key distribution”, Physical Review Applied, 8 (2017), 44017 , 12 pp., arXiv: 1705.06664  mathnet  crossref  isi (cited: 27)  scopus (cited: 25)
199. S. V. Rozanov, E. O. Kiktenko, “Approximation of mutual information in a bipartite quantum state under single-party decoherence”, JPCS, 918 (2017), 12006 , 4 pp.  mathnet  crossref  isi  scopus
200. E. O. Kiktenko, N. A. Afonkina, B. G. Skuibin, “Discussion of the Role of Quantum Information in the Framework of Laboratory Practice on Classical Optics”, Phisics in Higher Education, 23:4 (2017), 85–94  mathnet  elib
201. A. A. Koziy, I. I. Minchenko, M. G. Komarova, E. O. Kiktenko, “Study of probable and quasi-probable distributions with the help of specialized software”, Meždunar. nauč.-issled. žurn., 2017, no. 6-3(60), 72–81  mathnet  crossref  elib
202. Chandrashekar Radhakrishnan, Igor Ermakov, Tim Byrnes, “Quantum coherence of planar spin models with Dzyaloshinsky–Moriya interaction”, Phys. Rev. A, 96:1 (2017), 012341 , 11 pp., arXiv: 1707.03545  mathnet  crossref  isi (cited: 35)  scopus (cited: 35)
203. N. M. Bogolyubov, I. Ermakov, A. Rybin, “Time evolution of the atomic inversion for the generalized Tavis–Cummings model–QIM approach”, J. Phys. A, 50:46 (2017), 464003 , 24 pp., arXiv: 1702.03740  mathnet  mathnet  crossref  isi (cited: 3)  scopus (cited: 3);

   2016
204. Valentina Markusova, Konstantin Fursov, Aleksandr Pechen, Natalya Ivanova, Sergei Dmitriev, Artëm Oganov i dr., “Kak ukrepit pozitsii rossiiskoi nauki v mire? Itogi onlain-diskussii po voprosam publikatsionnoi aktivnosti”, Elektronnoe izdanie «NAUKA I TEKhNOLOGII ROSSII – STRF.ru», 2016 Kak ukrepit pozitsii rossiiskoi nauki v mire
205. A. N. Pechen, “On the speed gradient method for generating unitary quantum operations for closed quantum systems”, Russian Math. Surveys, 71:3 (2016), 597–599  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 4)  elib  elib  scopus (cited: 5)
206. Alexander N. Pechen, Nikolay B. Il'in, “On the problem of maximizing the transition probability in an $n$-level quantum system using nonselective measurements”, Proc. Steklov Inst. Math., 294 (2016), 233–240  mathnet  crossref  crossref  mathscinet  isi (cited: 6)  elib  elib  scopus (cited: 3)
207. A. N. Pechen, N. B. Ilin, “On extrema of the objective functional for short-time generation of single-qubit quantum gates”, Izv. Math., 80:6 (2016), 1200–1212 , arXiv: 1909.12958  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 3)  elib  elib  scopus (cited: 2)
208. K. A. Lyakhov, H. J. Lee, A. N. Pechen, “Some features of Boron isotopes separation by the laser-assisted retardation of condensation method in multipass irradiation cell implemented as a resonator”, IEEE Journal of Quantum Electronics, 52:12 (2016), 1400208 , 8 pp.  mathnet  crossref  isi (cited: 4)  scopus (cited: 6)
209. O. V. Morzhin, “Auto-encoders: examples of their using for data dimensionality reduction”, Distributed Computer and Communication Networks (DCCN 2016): Proc. of the 19th International Conference, Moscow, Russia, 2016  elib
210. O. V. Morzhin, “Manifolds and dimensionality reduction in machine learning. On the Student's t-distribution role in the t-SNE method”, Geometry of manifolds and its applications: Proc. of the 4th scientific conference (Ulan-Ude), 2016  elib
211. O. Lychkovskiy, “Large quantum superpositions of a nanoparticle immersed in superfluid helium”, Phys. Rev. B, 93 (2016), 214517 , 4 pp.  mathnet  crossref  isi  scopus (cited: 1)
212. A. E. Teretenkov, “Quadratic Dissipative Evolution of Gaussian States”, Math. Notes, 100:4 (2016), 642–646  mathnet  crossref  crossref  mathscinet  isi (cited: 11)  elib  elib  scopus (cited: 13)
213. S. N. Filippov, “Neunitarnye otobrazheniya i selektivnye izmereniya v kvantovoi tomografii”, 59-ya Vserossiiskaya nauchnaya konferentsiya MFTI s mezhdunarodnym uchastiem (Dolgoprudnyi - Moskva, 21-26 noyabrya 2016 g.), 2016 http://conf59.mipt.ru/static/reports_pdf/2873.pdf
214. D. V. Kolobova, S. N. Filippov, “Dekompozitsiya neunitalnykh kubitnykh kanalov”, 59-ya Vserossiiskaya nauchnaya konferentsiya MFTI s mezhdunarodnym uchastiem (Dolgoprudnyi - Moskva, 21-26 noyabrya 2016 g.), 2016 http://conf59.mipt.ru/static/reports_pdf/2095.pdf
215. V. V. Frizen, S. N. Filippov, “Dvukhkubitnye pereputannye sostoyaniya, naibolee ustoichivye k shumam v kvantovykh kanalakh s zatukhaniem amplitudy”, 59-ya Vserossiiskaya nauchnaya konferentsiya MFTI s mezhdunarodnym uchastiem (Dolgoprudnyi - Moskva, 21-26 noyabrya 2016 g.), 2016 http://conf59.mipt.ru/static/reports_pdf/1613.pdf
216. S. N. Filippov, “Non-linear quantum dynamics induced by measurements”, Ufa International Mathematical Conference. Book of Abstracts (September 27-30, 2016, Ufa, Russia), RITS BashSU, Ufa, 2016, 170–171
217. S. N. Filippov, K. Yu. Magadov, “2- and 3-tensor-stable positive qubit maps”, Materialy mezhdunarodnoi konferentsii po algebre, analizu i geometrii (Kazan, 26 iyunya – 2 iyulya 2016 g.), Kazanskii universitet, izd-vo Akademii nauk RT, Kazan, 2016, 45–47
218. I. A. Luchnikov, S. N. Filippov, “Non-linear dynamics induced by successive rank-r selective measurements”, 48 Symposium on Mathematical Physics “Gorini-Kossakowski-Lindblad-Sudarshan Master Equation - 40 Years After” (Toruń, Poland, June 10-12, 2016), 2016 http://www.fizyka.umk.pl/smp/smp48/BofA48.pdf
219. S. N. Filippov, “Spectral properties of reduced fermionic density operators and parity superselection rule”, Conference “Reduced Density Matrices in Quantum Physics and Role of Fermionic Exchange Symmetry” (Oxford, United Kingdom, 12–15 April 2016), University of Oxford, 2016 http://www.physics.ox.ac.uk/confs/pauli2016/include/posters/Filippov.pdf  zmath
220. M. Rudenko, D. Svintsov, S. Filippov, V. Vyurkov, “Single-electron solitons in magnetic field”, International Conference on Micro- and Nano-Electronics 2016 (Zvenigorod, Russian Federation, 03-06.10.2016), Proc. SPIE, 10224, 2016, 10242K , 9 pp.  mathnet  crossref  isi  scopus
221. D. S. Ageev, I. Ya. Aref'eva, “Holographic instant conformal symmetry breaking by colliding conical defects”, Theoret. and Math. Phys., 189:3 (2016), 1742–1754  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 12)  elib  scopus (cited: 6)
222. D. S. Ageev, I. Ya. Aref'eva, M. D. Tikhanovskaya, “$(1+1)$-Correlators and moving massive defects”, Theoret. and Math. Phys., 188:1 (2016), 1038–1068  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 10)  elib  elib  scopus (cited: 6)  scopus (cited: 6)
223. Dmitry S. Ageev, Irina Ya. Aref'eva, Anastasia A. Golubtsova, Eric Gourgoulhon, Holographic Wilson loops in Lifshitz-like backgrounds, 2016 , 31 pp., arXiv: 1606.03995
224. Dmitry Ageev, “Holographic Wilson loops in anisotropic quark-gluon plasma”, 19th International Seminar on High Energy Physics (QUARKS-2016), Sankt-Peterburg, 29 maya–4 iyunya 2016 g., EPJ Web of Conf., 125, 2016, 4007 , 6 pp.  mathnet  crossref  isi (cited: 3)  scopus (cited: 3)
225. Irina Ya. Aref'eva, Mikhail A. Khramtsov, “AdS/CFT prescription for angle-deficit space and winding geodesics”, JHEP, 2016, no. 4, 121 , 21 pp., arXiv: 1601.​02008  mathnet (cited: 2)  crossref  mathscinet  isi (cited: 13)  elib  scopus (cited: 11)
226. I. Ya. Aref'eva, M. A. Khramtsov, M. D. Tikhanovskaya, “Improved image method for a holographic description of conical defects”, Theoret. and Math. Phys., 189:2 (2016), 1660–1672  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 6)  elib  scopus (cited: 5)
227. I. Ya. Aref'eva, M. A. Khramtsov, M. D. Tikhanovskaya, Holographic Dual to Conical Defects III: Improved Image Method, 2016 , 18 pp., arXiv: 1604.08905
228. Mikhail Khramtsov, “Holographic dictionary and defects in the bulk”, 19th International Seminar on High Energy Physics (QUARKS-2016), Sankt-Peterburg, 29 maya–4 iyunya 2016 g., EPJ Web of Conf., 125, 2016, 5010 , 8 pp.  mathnet  crossref  isi (cited: 1)  scopus (cited: 1)
229. Evgeny Kiktenko, Anton Trushechkin, Yury Kurochkin, Aleksey Fedorov, “Post-processing procedure for industrial quantum key distribution systems”, JPCS, 741:1 (2016), 12081 , 6 pp.  mathnet  crossref  isi (cited: 19)  elib  scopus (cited: 18)
230. E. O. Kiktenko, A. A. Popov, A. K. Fedorov, “Document Bidirectional imperfect quantum teleportation with a single Bell state”, Phys. Rev. A, 93:6 (2016), 62305 , 8 pp., arXiv: quant-ph/1602.01420  mathnet  crossref  isi (cited: 20)  scopus (cited: 20)
231. Aleksey Popov, Evgeny Kiktenko, Aleksey Fedorov, Vladimir I. Man'ko, “Information Processing Using Three-Qubit and Qubit–Qutrit Encodings of Noncomposite Quantum Systems”, J. Russian Laser Research, 37:6 (2016), 581–590 , arXiv: quant-ph/1610.05576  mathnet  crossref  isi (cited: 3)  scopus (cited: 2)

   2015
232. A. N. Pechen, A. S. Trushechkin, “Measurement-assisted Landau-Zener transitions”, Phys. Rev. A, 91:5 (2015), 052316 , 15 pp., arXiv: 1506.08323  mathnet (cited: 1)  crossref  isi (cited: 19)  elib (cited: 2)  scopus (cited: 20)
233. A. N. Pechen, N. B. Il'in, “Existence of traps in the problem of maximizing quantum observable averages for a qubit at short times”, Proc. Steklov Inst. Math., 289 (2015), 213–220  mathnet  crossref  crossref  isi (cited: 11)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 7)
234. A. N. Pechen, N. B. Il'in, “On critical points of the objective functional for maximization of qubit observables”, Russian Math. Surveys, 70:4 (2015), 782–784  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 9)  elib  elib  scopus (cited: 6)
235. Sergei Dmitriev and Alexander Pechen, The professional growth and scientific career: is there a difference? (in Russian), The electronic journal «Science and Technology in RUSSIA – STRF.ru», 2015, March 27
236. Alexander Pechen and Anna Gorbatova, The second annual Blavatnik Science Symposium took place on August 5th and 6th 2015 at the New York Academy of Sciences (USA), The electronic journal «Science and Technology in RUSSIA - STRF.ru», 2015, August 10
237. O. Lychkovskiy, “Perpetual motion and driven dynamics of a mobile impurity in a quantum fluid”, Phys. Rev. A, 91 (2015), 040101 , 6 pp.  mathnet  crossref  adsnasa  isi (cited: 3)  scopus (cited: 17)
238. O. Gamayun, O. Lychkovskiy, V. Cheianov, “Reply to ‘Comment on ’Kinetic theory for a mobile impurity in a degenerate Tonks-Girardeau gas’’”, Phys. Rev. E, 92 (2015), 016102 , 2 pp.  mathnet  crossref  adsnasa  isi (cited: 1)  scopus (cited: 5)
239. I. A. Luchnikov, S. N. Filippov, “Statsionarnye sostoyaniya i kvantovaya dinamika v obobschënnykh modelyakh Dzheinsa–Kammingsa”, 58-ya Vserossiiskaya nauchnaya konferentsiya MFTI s mezhdunarodnym uchastiem (Dolgoprudnyi - Moskva, 23-28 noyabrya 2015 g.), 2015 http://conf58.mipt.ru/static/reports_pdf/610.pdf  zmath
240. I. V. Dudinets, S. N. Filippov, “Evolyutsiya pereputannykh sostoyanii v nesimmetrichnykh kvantovykh kanalakh”, 58-ya Vserossiiskaya nauchnaya konferentsiya MFTI s mezhdunarodnym uchastiem (Dolgoprudnyi - Moskva, 23-28 noyabrya 2015 g.), 2015 http://conf58.mipt.ru/static/reports_pdf/607.pdf
241. S. N. Filippov, “Dynamics of quantum entanglement of light under attenuation and amplification”, Book of abstracts, 2nd Russian-Britain Workshop “Advanced Photonics and Polaritonics” (March 12-15, 2015, Suzdal, Russia), 2015, 25–27
242. S. N. Filippov, “Influence of deterministic attenuation and amplification of optical signals on entanglement and distillation of Gaussian and non-Gaussian quantum states”, XII International Workshop on Quantum Optics (IWQO-2015), EPJ Web of Conf., 103, 2015, 3003 , 2 pp.  mathnet  crossref  isi (cited: 1)  scopus (cited: 3)
243. J. Exp. Theor. Phys., 120:3 (2015), 436–443  mathnet  crossref  crossref  isi (cited: 11)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 8)
244. D. Gal'tsov, M. Khramtsov, D. Orlov, ““Triangular” extremal dilatonic dyons”, Phys. Lett. B, 2015, no. 743, 87–92 , arXiv: 1412.7709  crossref  zmath  isi (cited: 12)  scopus (cited: 14)
245. S. M. Korotaev, E. O. Kiktenko, “Quantum causality in closed timelike curves”, Physica Scripta, 90 (2015), 085101 , 14 pp.  mathnet  crossref  isi (cited: 2)  scopus (cited: 3)
246. S. M. Korotaev, N. M. Budnev, V. O. Serdyuk, V. L. Zurbanov, R. R. Mirgazov, V. A. Machinin, E. O. Kiktenko, V. B. Buzin, A. V. Novysh, I. A. Portyanskaya, “Results of vertical electric field monitoring in Lake Baikal”, Izvestiya, Physics of the Solid Earth, 51:4 (2015), 602–611  mathnet  crossref  crossref  isi (cited: 3)  elib  elib  scopus (cited: 3)
247. E. O. Kiktenko, A. K. Fedorov, A. A. Strakhov, V. I. Man'ko, “Single qudit realization of the Deutsch algorithm using superconducting many-level quantum circuits”, Physics Letters A, 379:22-23 (2015), 1409–1413 , arXiv: quant-ph/1503.01583  mathnet  crossref  zmath  isi (cited: 52)  elib  scopus (cited: 54)
248. N. M. Budnev, S. M. Korotaev, E. O. Kiktenko, R. R. Mirgazov, A. I. Panfilov, V. O. Serdyuk, V. S. Shneer, V. L. Zurbanov, V. A. Machinin, V. B. Buzin, “Recent results of monitoring of the vertical component of the electrical field in Lake Baikal on the surface-bed baseline”, Geomagnetism and Aeronomy, 55:3 (2015), 398–409  mathnet  crossref  isi (cited: 5)  elib  elib  scopus (cited: 6)
249. A. K. Fedorov, E. O. Kiktenko, O. V. Man'ko, V. I. Man'ko, “Tomographic discord for a system of two coupled nanoelectric circuits”, Physica Scripta, 90:5 (2015), 055101 , arXiv: quant-ph/1409.5265  mathnet  crossref  isi (cited: 11)  elib  scopus (cited: 11)
250. E. O. Kiktenko, A. K. Fedorov, O. V. Man'ko, V. I. Man'ko, “Multilevel superconducting circuits as two-qubit systems: Operations, state preparation, and entropic inequalities”, Physical Review A - Atomic, Molecular, and Optical Physics, 91 (2015), 042312 , 7 pp.  mathnet  crossref  isi (cited: 48)  scopus (cited: 47)
251. A. Fedorov, E. Kiktenko, “Mutual information-energy inequality for thermal states of a bipartite quantum system”, Journal of Physics: Conference Series, 594 (2015), 012045 , 5 pp.  mathnet  crossref  isi  scopus
252. K. A. Lyakhov, K. H. Lee, “Some features of experimental setup design for isotopes separation by the laser assisted retardation of condensation method”, J. Laser Appl., 27:2 (2015), 022008  mathnet  crossref  isi (cited: 10)  scopus (cited: 10)
253. K. A. Lyakhov, H. J. Lee, “New Experimental Setup for Boron Isotopes Separation by the Laser Assisted Retardation of Condensation Method”, J. Nanoscience Nanotechnology, 15:11 (2015), 8502–8507  mathnet  crossref  isi (cited: 4)  elib  scopus (cited: 4)
Home page

© Steklov Mathematical Institute of RAS, 2004–2021