|
|
|
Department of Algebra
| Seminars |
History of the Department |
Areas of Research |
Main Results |
Awards |
International Relations |
Publications |
|
|
Staff
|
Parshin Aleksei Nikolaevich Doctor Phys.-Math. Sci., Academician of RAS, Head of Department
office: 525; tel.: +7 (499) 941 01 79, +7 (495) 984 81 41 * 39 33; e-mail: parshin@mi-ras.ru Principal fields of research:
Àlgebraic number theory and Galois theory. Algebraic geometry and n-dimensional local fields and their applications to arithmetics, geometry of manifolds, integrable systems, and quatum field theory. History of mathematics.
|
 |
Gorchinskiy Sergey Olegovich  Candidate Phys.-Math. Sci., Senior Scientific Researcher
office: 409; tel.: +7 (499) 941 01 79, +7 (495) 984 81 41 * 35 33; e-mail: gorchins@mi-ras.ru Principal fields of research:
Algebraic geometry, arithmetic geometry, higher-dimensional adeles,
K-theory, algebraic cycles.
|
 |
Kulikov Viktor Stepanovich Doctor Phys.-Math. Sci., Professor, Leading Scientific Rsearcher
office: 524; tel.: +7 (499) 941 01 79, +7 (495) 984 81 41 * 36 70; e-mail: kulikov@mi-ras.ru Principal fields of research:
Algebraic geometry and topology of algebraical manifolds.
|
 |
Nikulin Vyacheslav Valentinovich Doctor Phys.-Math. Sci., Leading Scientific Researcher
e-mail: nikulin@mi-ras.ru Principal fields of research:
Algebraic Geometry. Integer-valued quadratic forms generated by reflections in hyperbolic spaces. Automorphic forms. Lorentzian Kac-Moody algebras.
|
 |
Osipov Denis Vasil'evich  Doctor Phys.-Math. Sci., Leading Scientific Researcher
office: 540; tel.: +7 (499) 941 01 79, +7 (495) 984 81 41 * 39 32; e-mail: d_osipov@mi-ras.ru Principal fields of research:
Algebraic geometry. Algebraical number theory. Integrable systems.
|
 |
Popov Vladimir Leonidovich  Doctor Phys.-Math. Sci., Professor, Corresponding Member of RAS, Chief Scientific Researcher
office: 524; tel.: +7 (499) 941 01 79, +7 (495) 984 81 41 * 36 70; e-mail: popovvl@mi-ras.ru Principal fields of research:
Algebraic transformation groups. Invariant theory. Algebraic groups and their representation theory. Homogeneous spaces. Lie groups and Lie algebras. Algebro-geometric aspects of algebraic transformation group theory. Affine algebraic geometry. Automorphism groups of algebraic varieties. Discrete reflection groups.
|
 |
|
Abrashkin Viktor Aleksandrovich Doctor Phys.-Math. Sci., Out-Of-Staff Member
e-mail: victor.abrashkin@durham.ac.uk Personal page: http://maths.dur.ac.uk/~dma0va/
Principal fields of research:
Galois moduli of finite group schemes. $p$-Adic representations for the Galois group of local fields. The Iwasawa theory. Theory of $p$-extensions of local and global fields. Highest theory of branching.
|
|
Mikhailov Roman Valer'evich  Doctor Phys.-Math. Sci., Out-Of-Staff Member
e-mail: rmikhailov@mail.ru Principal fields of research:
Group theory, topology, category theory, algebraic K-theory.
|
|
|
Kostrikin Aleksei Ivanovich (12.02.1929 – 22.09.2000) Doctor Phys.-Math. Sci., Corresponding Member of USSR Academy of Sciences
|
|
Shafarevich Igor Rostislavovich (03.06.1923 – 19.02.2017) Doctor Phys.-Math. Sci., Academician of RAS
Personal page: http://www.mi-ras.ru/~shafarev
Principal fields of research:
Algebraic number theory. Algebraic geometry. Theory of Lie groups and Lie algebras. Commutative and associative algebras.
|
 |
Tyurin Andrei Nikolaevich (24.02.1940 – 27.10.2002) Doctor Phys.-Math. Sci., Corresponding Member of RAS
|
|
Voronin Sergei Mikhailovich (11.03.1948 – 18.10.1997) Doctor Phys.-Math. Sci.
|
|
|
Top |
Seminars
|
Top |
History of the Department
The Department of Algebra was created in the middle of 1930's. B. N. Delone was the first head. The list of people working at the department in the late 1930's and 1940's includes:
O. Yu. Schmidt, S. A. Chunikhin, I. M. Gelfand, A. I. Malcev.
Starting from 1946 I. R. Shafarevich is working at the department, being its head from 1960 to 1995. Many people in the department are his pupils: A. I. Lapin (1950 and 1957–1969),
A. I. Kostrikin (1956–2000; starting from 1977 he was also the head of the Chair of Algebra at the Moscow State University), S. P. Demushkin (1959–1975), A. B. Zhizhchenko (1959–1965), Yu. I. Manin (since 1960), A. N. Tyurin (1963–2002), V. A. Demyanenko (1967–1969), A. N. Parshin (since 1968, starting from 1995 he is the head of the department), S. Yu. Arakelov (PhD student from 1971 to 1974), V. V. Nikulin (1987–2002, out-of-staff member since 2002), V. A. Kolyvagin (1988–2004, out-of-staff member from 2004 to 2011), V. A. Abrashkin (1996–2002, out-of-staff member since 2002), Vik. S. Kulikov (PhD student from 1974 to 1977, then a member since 1997).
The following people have been working at the department: S. P. Novikov (1960–1975), F. A. Bogomolov (PhD student from 1970 to 1973, employee from 1973 to 1993, out-of-staff member until 2011), M. M. Kapranov (1986–1990), S. A. Stepanov (1987–2000), A. T. Fomenko (1998–2001).
Now the following people also work at the department: A. I. Bondal (since 1994), D. O. Orlov (since 1996), D. V. Osipov (since 1999), V. L. Popov (since 2002), D. B. Kaledin (since 2002), A. G. Kuznetsov (since 2002), R. V. Mikhailov (since 2004), V. V. Shokurov (since 2004), S. O. Gorchinskiy (since 2007), C. A. Shramov (since 2008), I. D. Shkredov (since 2010), A. I. Efimov (since 2010).
In 2009 the Department of Algebra was united with the Department of Number Theory. The following people have thus entered the department: G. I. Arkhipov, M. M. Grinenko (out-of-staff member since 2011), M. A. Korolev, V. V. Przyjalkowski, A. V. Pukhlikov, I. S. Rezvyakova.
In 2012 the Department of Algebraic Geometry was created on the base of the Department of Algebra and Number Theory. The following people are the members of the new department: D. O. Orlov (head of the department), A. I. Bondal, M. M. Grinenko, A. I. Efimov, D. B. Kaledin, A. G. Kuznetsov, V. V. Przyjalkowski, A. V. Pukhlikov, V. V. Shokurov, C. A. Shramov.
|
Top |
Areas of Research
Algebraic number theory, Galois theory, Lie groups and Lie algebras, theory of algebraic groups, algebraic geometry (especially the category theory of coherent sheaves, birational geometry, invariant theory), arithmetic of algebraic varieties, algebraic and differential topology, mathematical physics, combinatorial group theory, homological algebra, representations of groups, mirror symmetry, theory of adeles. |
Top |
Main Results
- 1. Algebraic number theory and Galois theory
- Construction of a general reciprocity law (I. R. Shafarevich, A. I. Lapin), solution of the inverse problem of the Galois theory for solvable groups (I. R. Shafarevich).
- Description of p-extensions of local and global fields (I. R. Shafarevich, S. P. Demushkin, H. Koch), solution of the problem of class field tower (E. S. Golod and I. R. Shafarevich), the structure of the Galois group for local fields (V. A. Abrashkin).
- Theory of Euler systems (V. A. Kolyvagin).
- 2. Lie groups and Lie algebras
- Semi-simple subgroups of Lie groups, nilmanifolds (A. I. Malcev).
- Theory of infinite-dimensional representations of classical Lie groups (I. M. Gelfand and M. A. Naimark).
- Solution of the weak Burnside problem for an arbitrary prime exponent (A. I. Kostrikin).
- Classification of simple Lie algebras in the positive characteristic (A. I. Kostrikin and I. R. Shafarevich).
- Integral lattices and orthogonal decompositions of Lie algebras (A. I. Kostrikin).
- Theory of Kac–Moody Lorentz algebras (V. A. Gritsenko, V. V. Nikulin).
- 3. Algebraic geometry
- Geometry of algebraic varieties: pencils of elliptic curves (I. R. Shafarevich), the Gauss–Manin connection (Yu. I. Manin), finiteness theorems for families of curves (A. N. Parshin and S. Yu. Arakelov).
- Theory of vector bundles: classification and Torelli type theorems for vector bundles over algebraic curves, the problem of a bundle of quadrics, vector bundles over an infinite-dimensional projective space (A. N. Tyurin).
- Theory of algebraic K3 surfaces and manifolds with a trivial canonical class: Torelli theorem (I. I. Piatetski-Shapiro, I. R. Shafarevich), structure of K3 surfaces in positive characteristic (A. N. Rudakov, I. R. Shafarevich), group of automorphisms, topological classification (V. V. Nikulin), surjectivity of the period map (V. S. Kulikov), classification of complex manifolds with trivial canonical class (F. A. Bogomolov).
- Solution of three-dimensional Lüroth problem (V. A. Iskovskikh, Yu. I. Manin).
- Flat and projective structures on Riemann surfaces (A. N. Tyurin).
- Theory of stable vector bundles on algebraic varieties (F. A. Bogomolov).
- Arithmetic groups in hyperbolic spaces and integral lattices (V. V. Nikulin).
- Smooth invariants of algebraic surfaces (V. Y. Pidstrigach, A. N. Tyurin).
- Derived categories of coherent sheaves on algebraic varieties and equivalences between them for varieties with ample and anti-ample canonical class, as well as for abelian varieties (M. M. Kapranov, A. I. Bondal, D. O. Orlov).
- Derived categories of coherent sheaves on a symplectic resolution of an arbitrary singularity (D. B. Kaledin).
- Theorem on integral kernel for an equivalence between derived categories of coherent sheaves on possibly singular projective varieties (D. O. Orlov, V. A. Lunts).
- Theory of homological projective duality (A. Kuznetsov).
- Derived categories of coherent sheaves on isotropic Grassmannians (A. G. Kuznetsov, A. E. Polishchuk).
- Prym varieties, their difference with Jacobians, and applications to the
three-dimensional birational geometry (V. V. Shokurov).
- Minimal model program and its applications to higher-dimensional geometry. Moduli of polarized log pairs and positivity of the module part in the adjunction formula (V. V. Shokurov).
- Application of unramified Brauer group to the unirationality problem for algebraic varieties (F. A. Bogomolov).
- Topology of algebraic surfaces: Chisini conjecture for generic projections of algebraic surfaces onto projective plane, counterexamples in deformation theory, description of components of the Hurwitz spaces of coverings of algebraic curves (Vik. S. Kulikov).
- Birational geometry of Fano varieties: description of the structures of a rationally connected fibration on Fano double spaces of index 2 and dimension 5 and above, computation of the group of birational automorphisms and the proof of non-rationality (A. V. Pukhlikov).
- Invariant theory: algebraic groups as groups of automorphisms of algebras, solution of the problem of rationality of the function field on a connected semisimple algebraic group over the subfield of central functions, description of Cayley groups (V. L. Popov).
- Applications of algebraic geometry and Tannakian categories to the differential Galois theory, parametrized Picard–Vessiot extensions (S. O. Gorchinskiy, A. I. Ovchinnikov).
- Deformation quantization of algebraic varieties over a field of positive characteristic. Noncommutative analogues of the Cartier morphism and the Frobenius map for cyclic homology (D. B. Kaledin).
- 4. Arithmetic of algebraic varieties
- Diophantine equations of degree three (B. N. Delone and D. K. Faddeev).
- Arithmetic of elliptic curves and abelian varieties: theory of principal homogeneous spaces (I. R. Shafarevich), unboundedness of rank over function fields (A. I. Lapin), boundedness of p-torsion of elliptic curves (Yu. I. Manin), estimates for the torsion of elliptic curves (V. A. Demyanenko), canonical heights of abelian varieties (A. N. Parshin), l-adic representations of Galois groups associated with abelian varieties, the group of points of finite order (F. A. Bogomolov), proof of the nonexistence of smooth abelian schemes over Z (V. A. Abrashkin).
- Finiteness theorems in Diophantine geometry: proof of the Mordell conjecture on rational points over function fields (Yu. I. Manin), method of ramified coverings (A. N. Parshin), finiteness of the Tate–Shafarevich group for modular curves (V. A. Kolyvagin).
- Arithmetic surfaces (Arakelov geometry).
- Arithmetic of rational and cubic surfaces (Yu. I. Manin, V. A. Iskovskikh).
- Theory of p-adic L-functions and modular forms (Yu. I. Manin).
- Theory of n-dimensional local fields and its applications to class field theory, vector bundles and the theory of algebraic groups (A. N. Parshin).
- Theory of adeles: measure theory and harmonic analysis on adelic spaces of two-dimensional schemes (D. V. Osipov, A. N. Parshin), symbols and reciprocity laws (D. V. Osipov), adelic resolutions for sheaves (S. O. Gorchinskiy, D. V. Osipov).
- 5. Algebraic and differential topology
- Theory of cohomological operations. Description of complex cobordisms. Classification of simply connected smooth manifolds of dimension ≷ 4. Proof of topological invariance of Pontryagin classes. Theory of foliations on smooth manifolds. Foundations of Hermitian
K-theory (S. P. Novikov).
- Theory of derived functors for non-additive functors (R. V. Mikhailov, L. Breen).
- Functorial methods in the unstable homotopy theory (R. V. Mikhailov).
- 6. Mathematical physics
- Solution of the periodic problem for the KdV equation by methods of algebraic geometry (S. P. Novikov).
- Classification of instantons (V. G. Drinfeld, Yu. I. Manin).
- Models of classical field theory: supergeometry, the Yang–Mills theory, and string theory (Yu. I. Manin, M. M. Kapranov).
- Description of instantons on noncommutative spaces and noncommutative twistor transform (A. Kapustin, A. G. Kuznetsov, D. O. Orlov).
- Homological mirror symmetry and the category of D-branes for Landau–Ginzburg models (D. O. Orlov). Homological mirror symmetry for curves of genus greater than one (A. I. Efimov) and del Pezzo surfaces (D. O. Orlov).
- 7. Combinatorial group theory and applications
- Theory of central series for groups (R. V. Mikhailov).
- Description of homotopy groups of spheres in terms of group theory (R. V. Mikhailov, J. Wu).
- 8. Representation theory
- Moduli space of representations of Lie algebras in positive characteristic (I. R. Shafarevich, A. N. Rudakov).
- Classification and character theory for irreducible representations with finite weight of discrete Heisenberg groups (A. N. Parshin, S. A. Arnal).
|
Top |
Awards
Among the members of the department there are recipients of the Fields Medal (S. P. Novikov), the Lenin Prize (I. R. Shafarevich, Yu. I. Manin, S. P. Novikov), the State USSR Prize (A. I. Kostrikin, S. A. Stepanov), the Lomonosov Prize (A. I. Kostrikin), the Alexander von Humboldt Prize (A. N. Parshin), the European Mathematical Society Prize (A. G. Kuznetsov), Russian Federation President Prize in Science and Innovation for Young Scientists (A. G. Kuznetsov) and others. |
Top |
International Relations
- Department members have been repeatedly invited to the International Congresses of Mathematicians as speakers:
- I. R. Shafarevich (Stokholm, 1962; Nice, 1970),
- A. I. Kostrikin (Stokholm, 1962; Nice, 1970),
- S. P. Novikov (Stokholm, 1962; Moscow, 1966; Nice, 1970),
- Yu. I. Manin (Stokholm, 1962; Nice, 1970; Helsinki, 1978; Berkeley, 1986),
- A. N. Parshin (Nice, 1970),
- S. Yu. Arakelov (Vancouver, 1974),
- F. A. Bogomolov (Helsinki, 1978),
- V. V. Nikulin (Berkeley, 1986),
- V. L. Popov (Berkeley, 1986),
- V. A. Kolyvagin (Kioto, 1990),
- A. I. Bondal (Pekin, 2002),
- D. O. Orlov (Pekin, 2002),
- D. B. Kaledin (Hyderabad, 2010).
- The Department of Algebra and Number Theory has many relations with Russian and foreign mathematicians. Department visitors include:
- V. Alexeev, A. N. Andrianov, R. V. Bezrukavnikov, A. A. Beilinson, N. A. Vavilov, B. B. Venkov, A. M. Vershik, V. A. Voevodsky, V. E. Voskresensky, S. V. Vostokov, V. Ginzburg, V. A. Gritsenko, V. I. Guletskii, A. S. Dzhumadildaev, N. V. Durov, Yu. L. Ershov, Yu. G. Zarhin, M. M. Kapranov, A. A. Klyachko, M. L. Kontsevich, V. A. Lunts, S. A. Merkulov, I. A. Panin, A. A. Panchishkin, F. V. Petrov, V. P. Platonov, A. E. Polishchuk, Yu. G. Prokhorov, A. A. Rosly, A. N. Skorobogatov, A. L. Smirnov, S. G. Tankeev,
A. S. Tikhomirov, N. A. Tyurin, L. D. Faddeev, V. M. Kharlamov, I. A. Cheltsov, V. I. Janchevsky, W. Baily, L. Bers, L. Breen, F. Campana, J. W. S. Cassels, A. Corti, P. Deligne, H. Esnault, G. van der Geer, D. Gieseker, Ph. Griffiths, M. Harris, M. Hazewinkel, F. Hirzebruch, R. Holzapfel, E. Kaehler, E. Kani, L. Katzarkov, B. Keller, H. Koch, S. Lang, R. P. Langlands, R. MacPherson, Y. Miyaoka, D. Mumford, M. S. Narasimhan, A. Neeman, H. Opolka, T. Pantev, I. B. Passi, G. Prasad, M. Raghunathan, M. Reid, N. Schappacher, T. Shioda, J.-P. Serre, C. S. Seshadri, J. Tate, A. Todorov, J.-L. Verdier, E. Vieweg, M. Wodzicki, G. Wuestholz, D. Zagier, E.-W. Zink, T. Zink, and many others.
- The department actively cooperates with many institutes and universities, including:
- Moscow State University, Novosibirsk State University, Independent University of Moscow, St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg State University, Yaroslavl State Pedagogical University, ETH (Switzerland), Harish-Chandra Research Institute (India), IAS (U.S.A.), IHES (France), IPMU (Japan), ICTP (Italy), London Imperial College (UK), MPIM (Germany), POSTECH (South Korea), Punjab University (India), RIMS (Japan), TIFR (India), University of Durham (UK), University of Edinburgh (UK), University of Liverpool (UK), University of Warwick (UK), University of Vienna (Austria).
|
Recent publications
Steklov Mathematical Institute staff
Steklov Mathematical Institute staff and out-of-staff employees
|
|
2019 |
1. |
A. B. Zheglov, D. V. Osipov, “Lax pairs for linear Hamiltonian systems”, Siberian Mathematical Journal, 2019 (to appear) , arXiv: 1901.11130 |
2. |
Vik. S. Kulikov, Izv. RAN. Ser. Mat. (to appear) |
|
2019 |
3. |
V. L. Popov, “Three plots about the Cremona groups”, Izv. RAN. Ser. Mat., 2019 (to appear) , arXiv: 1810.00824 |
4. |
Vladimir L. Popov, Variations on the theme of Zariski's Cancellation Problem, 2019 , 15 pp., arXiv: 1901.07030 |
5. |
Vladimir L. Popov, On conjugacy of stabilizers of reductive group actions, 2019 , 2 pp., arXiv: 1901.10858 |
|
2018 |
6. |
V. V. Nikulin, “Classification of Picard lattices of K3 surfaces”, Izv. Math., 82:4 (2018), 752–816 (cited: 1) |
7. |
Valery Gritsenko, Viacheslav V. Nikulin, “Lorentzian Kac–Moody algebras with Weyl groups of 2-reflections”, Proceedings of London Mathematical Society, 116:3 (2018), 485–533 (cited: 1) (cited: 1) |
8. |
Viacheslav V. Nikulin, Classification of degenerations and Picard lattices of Kahlerian K3 surfaces with small finite symplectic automorphism groups, 2018 , 39 pp., arXiv: 1804.00991 |
|
2019 |
9. |
D. V. Osipov, “Adelic quotient group for algebraic surfaces”, St. Petersburg Mathematical Journal, 30 (2019), 111-122 , arXiv: 1706.09826 |
|
2018 |
10. |
D. V. Osipov, “Arithmetic surfaces and adelic quotient groups”, Izv. Math., 82:4 (2018), 817-836 , arXiv: 1801.02282 (cited: 1) |
11. |
A. B. Zheglov, D. V. Osipov, “On first integrals of linear Hamiltonian systems”, Dokl. Math., 98:3 (2018), 616–618 |
12. |
Vik. S. Kulikov, “On divisors of small canonical degree on Godeaux surfaces”, Sb. Math., 209:8 (2018), 1155–1163 (cited: 1) (cited: 1) |
13. |
Vik. S. Kulikov, G. B. Shabat, “Igor Rostislavovich Shafarevich – velikii matematik i Uchitel”, Matematicheskoe prosveschenie, 2018, Tretya seriya, no. 22, 37–63 |
14. |
Vik. S. Kulikov, On the variety of the inflection points of plane cubic curves, 2018 , 27 pp., arXiv: 1810.01705 |
15. |
Vik. S. Kulikov, On the almost generic covers of the projective plane, 2018 , 13 pp., arXiv: 1812.01313 |
16. |
Vladimir L. Popov, “The Jordan property for Lie groups and automorphism groups of complex spaces”, Math. Notes, 103:5 (2018), 811–819 |
17. |
Vladimir L. Popov, Yuri G. Zarhin, Root systems in number fields, 2018 , 15 pp., arXiv: 1808.01136 |
18. |
Vladimir L. Popov, Three plots about the Cremona groups, 2018 , 27 pp., arXiv: 1810.00824 |
19. |
Victor G. Kac, Vladimir L. Popov, Editors, Lie Groups, Geometry, and Representation Theory. A Tribute to the Life and Work of Bertram Kostant, Series ISSN 0743-1643, ISBN 978-3-030-02191-7, Progress in Mathematics, 326, First Edition, Birkhäuser Basel (Copyright Holder: Springer Nature Switzerland AG), Basel, 2018 , X, 538 pp. www.springer.com/us/book/9783030021900 |
20. |
Vladimir L. Popov, Yuri G. Zarhin, Root symstems in number fields, Preprint MPIM 18-38, Max-Planck-Institut für Mathematik, Bonn, 2018 , 19 pp. www.mpim-bonn.mpg.de/preblob/5898 |
21. |
Vladimir L. Popov, “Modality of representations, and packets for $\theta$-groups”, Lie Groups, Geometry, and Representation Theory. A Tribute to the Life and Work of Bertram Kostant, Prog. Math., 326, Birkhäuser Basel (Copyright Holder: Springer Nature Switzerland AG), Basel, 2018, 459–579 , arXiv: 1707.07720 |
22. |
V. L. Popov, “Compressible finite groups of birational automorphisms”, Dokl. Math., 98:2 (2018), 413–415 |
23. |
V. L. Popov, Yu. G. Zarhin, “Types of root systems in number fields”, Dokl. Math., 98:3 (2018), 600–602 |
24. |
A. N. Parshin, Vestnik RAN, 88:11 (2018), 982–984 |
25. |
S. Gorchinskiy, V. Guletskiǐ, “Positive model structures for abstract symmetric spectra”, Appl. Categ. Struct., 26:1 (2018), 29–46 , arXiv: 1108.3509v3 (cited: 1) |
26. |
S. O. Gorchinskiy, D. M. Krekov, “An explicit formula for the norm in the theory of fields of norms”, Russian Math. Surveys, 73:2 (2018), 369–371 |
27. |
S. O. Gorchinskiy, D. N. Tyurin, “Relative Milnor $K$-groups and differential forms of split nilpotent extensions”, Izv. Math., 82:5 (2018), 880–913 |
28. |
S.Gorchinskiy, C.Shramov, Unramified Brauer group and its applications, Translations of Mathematical Monographs, 246, American Mathematical Society, Providence, 2018 , xvii+179 pp. |
29. |
S.O.Gorchinskii, K.A.Shramov, Nerazvetvlennaya gruppa Brauera i ee prilozheniya, MTsNMO, Moskva, 2018 , 200 pp. |
|
2017 |
30. |
Valery Gritsenko, Viacheslav V. Nikulin, Examples of lattice-polarized K3 surfaces with automorphic discriminant, and Lorentzian Kac–Moody algebras, 2017 , 15 pp., arXiv: 1702.07551 |
31. |
V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. III”, Izv. Math., 81:5 (2017), 985–1029 (cited: 1) (cited: 1) |
32. |
Viacheslav V. Nikulin, Classification of Picard lattices of K3 surfaces, 2017 , 68 pp., arXiv: 1707.05677 |
33. |
V. A. Gritsenko, V. V. Nikulin, “Examples of lattice-polarized K3 surfaces with automorphic discriminant, and Lorentzian Kac–Moody algebras”, Trans. Moscow Math. Soc., 78 (2017), 75–83 |
34. |
Denis V. Osipov, “Second Chern numbers of vector bundles and higher adeles”, Bull. Korean Math. Soc., 54:5 (2017), 1699–1718 , arXiv: 1706.07354 (cited: 2) (cited: 1) |
35. |
Vik. S. Kulikov, E. I. Shustin, “On $G$-Rigid Surfaces”, Proc. Steklov Inst. Math., 298 (2017), 133–151 (cited: 3) (cited: 2) |
36. |
Vik. S. Kulikov, “The Hesse curve of a Lefschetz pencil of plane curves”, Russian Math. Surveys, 72:3 (2017), 574–576 |
37. |
Vladimir L. Popov, “Do we create mathematics or do we gradually discover theories which exist somewhere independently of us?”, Eur. Math. Soc. Newsl., 107 (2017), 37 |
38. |
V. L. Popov, “Borel subgroups of Cremona groups”, Mathematical Notes, 102:1 (2017), 60-67 (cited: 3) (cited: 1) |
39. |
Vladimir L. Popov, Algebraic groups whose orbit closures contain only finitely many orbits, 2017 , 12 pp., arXiv: 1707.06914v1 |
40. |
Vladimir L. Popov, “Bass' triangulability problem”, Algebraic varieties and automorphism groups, Adv. Stud. Pure Math., 75, Math. Soc. Japan, Kinokuniya, Tokyo, 2017, 425–441 bookstore.ams.org/aspm-75/, arXiv: 1504.03867 |
41. |
Vladimir L. Popov, “Discrete groups generated by complex reflections”, VI-th conference on algebraic geometry and complex analysis for young mathematicians of Russia (Northern (Arctic) Federal University named after M. V. Lomonosov, Koryazhma, Arkhangelsk region, Russia, August 25–30, 2017), Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, 2017, 13–14 www.mathnet.ru/php/conference.phtml?confid=1006&option_lang=eng |
42. |
Gene Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Subseries: Invariant Theory and Algebraic Transformation Groups, Encyclopaedia of Mathematical Sciences, 136, no. VII, 2nd ed., eds. Revaz V. Gamkrelidze, Vladimir L. Popov, Springer, Berlin, 2017 , 316+i-xxii pp. https://link.springer.com/content/pdf/bfm |
43. |
V. L. Popov, “On modality of representations”, Dokl. Math., 96:1 (2017), 312–314 (cited: 1) |
44. |
L. A. Bokut', E. I. Zelmanov, P. Zusmanovich, V. G. Kac, L. G. Makar-Limanov, Yu. I. Manin, S. P. Novikov, A. N. Parshin, V. P. Platonov, I. A. Taimanov, U. U. Umirbaev, I. P. Shestakov, “Askar Serkulovich Dzhumadil'daev (on his 60th birthday)”, Russian Math. Surveys, 72:4 (2017), 777–781 |
45. |
Sergey Gorchinskiy, “Integral Chow motives of threefolds with $K$-motives of unit type”, Bull. Korean Math. Soc., 54:5 (2017), 1827–1849 , arXiv: 1703.06977 (cited: 2) (cited: 2) |
|
2016 |
46. |
V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. II”, Izv. Math., 80:2 (2016), 359–402 (cited: 2) (cited: 1) |
47. |
Valery Gritsenko, Viacheslav V. Nikulin, Lorentzian Kac–Moody algebras with Weyl groups of 2-reflection, 2016 , 73 pp., arXiv: 1602.08359 |
48. |
Viacheslav V. Nikulin, “Kählerian K3 surfaces and Niemeier lattices, II”, Adv. Stud. Pure Math., 69, 2016, 421–471 (cited: 2) |
49. |
Denis Osipov, Xinwen Zhu, “The two-dimensional Contou-Carrère symbol and reciprocity laws”, J. Algebraic Geom., 25 (2016), 703–774 , arXiv: 1305.6032 (cited: 5) (cited: 4) |
50. |
D. V. Osipov, A. N. Parshin, “Representations of the Discrete Heisenberg Group on Distribution Spaces of Two-Dimensional Local Fields”, Proc. Steklov Inst. Math., 292 (2016), 185–201 , arXiv: 1510.02423 (cited: 1) |
51. |
Sergey O. Gorchinskiy, Denis V. Osipov, “Continuous homomorphisms between algebras of iterated Laurent series over a ring”, Proc. Steklov Inst. Math., 294 (2016), 47–66 (cited: 8) (cited: 3) |
52. |
S. O. Gorchinskiy, D. V. Osipov, “Higher-dimensional Contou-Carrère symbol and continuous automorphisms”, Funct. Anal. Appl., 50:4 (2016), 268–280 (cited: 10) (cited: 7) |
53. |
Viktor S. Kulikov, Eugenii Shustin, “On rigid plane curves”, Eur. J. Math., 2:1 (2016), 208–226 , arXiv: 1501.03777 (cited: 1) (cited: 2) |
54. |
Vik. S. Kulikov, “Plane rational quartics and K3 surfaces”, Proc. Steklov Inst. Math., 294 (2016), 95–128 (cited: 4) (cited: 1) |
55. |
Vik. S. Kulikov, “K3 poverkhnosti s deistviyami gruppy $S_4$ i ratsionalnye kvartiki”, Mezhdunarodnaya konferentsiya po algebraicheskoi geometrii, kompleksnomu analizu i kompyuternoi algebre (Filial S(A)FU im. M. V. Lomonosova, g. Koryazhma Arkhangelskoi oblasti, Rossiya, 3–9 avgusta 2016 g.), Matematicheskii institut im. V.A. Steklova Rossiiskoi akademii nauk, Moskva, 2016, 40–42 http://www.mathnet.ru/ConfLogos/805/thesis.pdf |
56. |
Vik.S. Kulikov, “A remark on classical Pluecker's formulae”, Ann. Fac. Sci. Toulouse. Math., 25:5 (2016), 959–967 , arXiv: 1101.5042 |
57. |
Vladimir L. Popov, “Birational splitting and algebraic group actions”, Eur. J. Math., 2:1 (2016), 283–290 https://www.math.uni-bielefeld.de/LAG/man/552.pdf, arXiv: 1502.02167 (cited: 2) (cited: 1) |
58. |
V. L. Popov, G. V. Sukhotskii, Analiticheskaya geometriya. Uchebnik i praktikum, Bakalavr. Akademicheskii kurs, 2-e izd., per. i dop., Yurait, Moskva, 2016 , 232 pp. http://urait.ru/catalog/388730 |
59. |
V. L. Popov, “Algebras of General Type: Rational Parametrization and Normal Forms”, Proc. Steklov Inst. Math., 292:1 (2016), 202–215 (cited: 1) (cited: 1) |
60. |
V. L. Popov, “Subgroups of the Cremona groups: Bass' problem”, Dokl. Math., 93:3 (2016), 307–309 |
61. |
V. L. Popov, “Rationality of (co)adjoint orbits”, International conference on algebraic geometry, complex analysis and computer algebra (Northern (Arctic) Federal University named after M. V. Lomonosov, Koryazhma, Arkhangelsk region, Russia, August 03–09, 2016), Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, 2016, 84–85 http://www.mathnet.ru/ConfLogos/805/thesis.pdf |
62. |
L. A. Bokut', E. S. Golod, R. I. Grigorchuk, V. N. Zhelyabin, V. G. Kats, A. R. Kemer, V. V. Kirichenko, P. S. Kolesnikov, S. S. Kutateladze, V. N. Latyshev, Yu. N. Maltsev, G. A. Margulis, A. V. Mikhalev, A. G. Myasnikov, S. P. Novikov, A. Yu. Ol'shanskii, A. N. Parshin, V. P. Platonov, Yu. G. Reshetnyak, N. S. Romanovskii, I. A. Taimanov, O. G. Kharlampovich, V. K. Kharchenko, L. N. Shevrin, I. P. Shestakov, A. V. Yakovlev, “Efim Isaakovich Zelmanov is 60 years old”, Russian Math. Surveys, 71:4 (2016), 793–800 |
63. |
I. V. Beloshapka, S. O. Gorchinskiy, “Irreducible representations of finitely generated nilpotent groups”, Sb. Math., 207:1 (2016), 41–64 (cited: 2) |
64. |
S. Gorchinskiy, V. Guletskiǐ, “Symmetric powers in abstract homotopy categories”, Adv. Math., 292 (2016), 707–754 (cited: 2) (cited: 2) |
|
2015 |
65. |
V. V. Nikulin, Degenerations of Kahlerian K3 surfaces with finite symplectic automorphism groups, II, 2015 , 55 pp., arXiv: 1504.00326v4 |
66. |
V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups”, Izv. Math., 79:4 (2015), 740–794 (cited: 4) (cited: 1) (cited: 1) (cited: 1) |
67. |
V. V. Nikulin, “Degenerations of Kahlerian K3 surfaces with finite symplectic automorphism groups.”, Conference on K3 surfaces and related topics (KIAS, Seoul, Korea, 16–20 November), 2015 , 1 pp. http://home.kias.re.kr/MKG/h/K3surfaces/ |
68. |
S. O. Gorchinskiy, D. V. Osipov, “Explicit formula for the higher-dimensional Contou-Carrère symbol”, Russian Math. Surveys, 70:1 (2015), 171–173 (cited: 8) (cited: 1) (cited: 1) (cited: 3) |
69. |
S. O. Gorchinskiy, D. V. Osipov, “A higher-dimensional Contou-Carrère symbol: local theory”, Sb. Math., 206:9 (2015), 1191–1259 , arXiv: 1505.03829 (cited: 12) (cited: 1) (cited: 1) (cited: 7) |
70. |
D. V. Osipov, “The Discrete Heisenberg Group and Its Automorphism Group”, Math. Notes, 98:1 (2015), 185–188 , arXiv: 1505.00348 (cited: 3) (cited: 1) (cited: 1) (cited: 1) |
71. |
S. O. Gorchinskiy, D. V. Osipov, “Tangent Space to Milnor $K$-Groups of Rings”, Proc. Steklov Inst. Math., 290 (2015), 26–34 , arXiv: 1505.03780 (cited: 5) (cited: 1) (cited: 1) (cited: 2) |
72. |
F. A. Bogomolov, Vik. S. Kulikov, “The ambiguity index of an equipped finite group”, Eur. J. Math., 1:2 (2015), 260–278 , arXiv: 1404.5763 (cited: 2) |
73. |
Vik. S. Kulikov, “Dualizing coverings of the plane”, Izv. Math., 79:5 (2015), 1013–1042 (cited: 4) (cited: 2) |
74. |
Viktor S. Kulikov, Eugenii Shustin, “Duality of planar and spacial curves: new insight”, Eur. J. Math., 1:3 (2015), 462–482 , arXiv: 1412.1944 |
75. |
Vik. S. Kulikov, “O klassicheskikh formulakh Plyukkera”, V Shkola-konferentsiya po algebraicheskoi geometrii i kompleksnomu analizu dlya molodykh matematikov Rossii. Tezisy dokladov. (g. Koryazhma Arkhangelskoi oblasti, Filial S(A)FU im. M.V. Lomonosova, 17–22 avgusta 2015 g.), MIAN, M., 2015, 50–54 http://www.mathnet.ru/ConfLogos/604/thesis-Koryazhma.pdf |
76. |
I. R. Shafarevich, Collected mathematical papers, Reprint of the 1989 edition, Springer Collect. Works Math., Springer, Heidelberg, 2015 , x+769 pp. |
77. |
Vladimir L. Popov, “Around the Abhyankar–Sathaye conjecture”, Documenta Mathematica, 2015, Extra Volume:Alexander S. Merkurjev's Sixtieth Birthday (The Book Series, Vol. 7), 513–528 https://www.math.uni-bielefeld.de/documenta/vol-merkurjev/popov.html, arXiv: 1409.6330 (ISSN 1431-0643 (INTERNET), 1431-0635 (PRINT)) |
78. |
V. L. Popov, “Finite subgroups of diffeomorphism groups”, Proc. Steklov Inst. Math., 289 (2015), 221–226 , arXiv: 1310.6548v2 (cited: 9) (cited: 5) |
79. |
V. L. Popov, “Problema Bassa o trianguliruemosti podgrupp grupp Kremony”, V shkola-konferentsiya po algebraicheskoi geometrii i kompleksnomu analizu dlya molodykh matematikov Rossii (g. Koryazhma Arkhangelskoi oblasti, Filial Severnogo (Arkticheskogo) federalnogo universiteta im. M. V. Lomonosova, 17–22 avgusta 2015 g.), Matematicheskii institut im. V.A. Steklova Rossiiskoi akademii nauk, Moskva, 2015, 83–87 http://www.mathnet.ru/ConfLogos/604/thesis-Koryazhma.pdf |
80. |
V. L. Popov, “Number of components of the nullcone”, Proc. Steklov Inst. of Math., 290 (2015), 84–90 , arXiv: 1503.08303 (cited: 2) (cited: 2) |
81. |
Vladimir L. Popov, “On the equations defining affine algebraic groups”, Pacific J. Math., 279:1-2, Special issue. In memoriam: Robert Steinberg (2015), 423–446 http://msp.org/pjm/2015/279-1/p19.xhtml, arXiv: 1508.02860 (cited: 1) |
82. |
H. Derksen, G. Kemper, Computational Invariant Theory, with two Appendices by Vladimir L. Popov, and an Addendum by Norbert A'Campo and Vladimir L. Popov, Encyclopaedia of Mathematical Sciences, subseries “Invariant Theory and Algebraic Transformation Groups”, 130, no. VIII, Second Enlarged Edition, eds. R. V. Gamkrelidze, V. L. Popov, Springer, Berlin, Heidelberg, 2015 , 387 pp. |
83. |
Vladimir L. Popov, “Stratification of the nullcone”, Appendix C in: H. Derksen, G. Kemper, Computational Invariant Theory, Subseries “Invariant Theory and Algebraic Transformation Groups”, no. VIII, Encyclopaedia of Mathematical Sciences, 130, 2nd Enlarged Ed. with two Appendices by V. L. Popov, and an Addendum by N. A. Campo and V. L. Popov, Springer, Berlin, 2015, 323–344 www.springer.com/gp/book/9783662484203 |
84. |
Norbert A'Campo, Vladimir L. Popov, “The source code of HNC”, Addendum to Appendix C in: H. Derksen, G. Kemper, Computational Invariant Theory, Subseries “Invariant Theory and Algebraic Transformation Groups”, no. VIII, Encyclopaedia of Mathematical Sciences, 130, 2nd Enlarged Ed. with two Appendices by V. L. Popov, and an Addendum by N. A. Campo and V. L. Popov, Springer, Berlin, 2015, 345–358 www.springer.com/gp/book/9783662484203 |
85. |
S. I. Adian, V. V. Benyash-Krivets, V. M. Buchstaber, E. I. Zelmanov, V. V. Kozlov, G. A. Margulis, S. P. Novikov, A. N. Parshin, G. Prasad, A. S. Rapinchuk, L. D. Faddeev, V. I. Chernousov, “Vladimir Petrovich Platonov (on his 75th birthday)”, Russian Math. Surveys, 70:1 (2015), 197–201 (cited: 2) (cited: 1) |
86. |
A. N. Parshin, “On the direct image conjecture in the relative Langlands programme”, Russian Math. Surveys, 70:5 (2015), 961–963 (cited: 1) |
87. |
S. I. Adian, V. V. Benyash-Krivets, V. M. Buchstaber, E. I. Zel'manov, V. V. Kozlov, G. A. Margulis, S. P. Novikov, A. N. Parshin, G. Prasad, A. S. Rapinchuk, L. D. Faddeev, V. I. Chernousov, “Vladimir Petrovich Platonov (to the 75 anniversary since the birth of)”, Chebyshevskii Sb., 16:4 (2015), 6–10 |
88. |
Sergey Gorchinskiy, Alexei Rosly, “A polar complex for locally free sheaves”, Int. Math. Res. Not. IMRN, 2015:10 (2015), 2784–2829 |
|
2014 |
89. |
V. V. Nikulin, “Elliptic fibrations on K3 surfaces”, Proc. Edinb. Math. Soc. (2), 57:1 (2014), 253–267 (cited: 1) (cited: 1) |
90. |
V. V. Nikulin, Degenerations of Kahlerian K3 surfaces with finite symplectic automorphism groups, 2014 , 70 pp., arXiv: 1403.6061v3 |
91. |
V. V. Nikulin, “Kahlerian K3 surfaces and Niemeier lattices”, Workshop: Automorphic forms, Lie algebras and String theory (Lille University II, March 3–6), Lille, France, 2014 , 28 pp. http://www.ihes.fr/~vanhove/Lille2014/index.html |
92. |
V. V. Nikulin, “Degenerations of Kahlerian K3 surfaces with finite symplectic automorphism groups”, Conference: Moduli spaces of real and complex varieties (Angers University, June 2–6), Angers, France, 2014 , 1 pp. http://www.math.univ-angers.fr/~mangolte/Angers-2014-abstracts.pdf |
93. |
H. Kurke, D. Osipov, A. Zheglov, “Commuting differential operators and higher-dimensional algebraic varieties”, Selecta Math. (N.S.), 20:4 (2014), 1159–1195 , arXiv: 1211.0976 (cited: 4) (cited: 1) |
94. |
Vik. S. Kulikov, V. M. Kharlamov, “On numerically pluricanonical cyclic coverings”, Izv. Math., 78:5 (2014), 986–1005 |
95. |
Vik.S. Kulikov, On the Galois groups of the dualizing coverings for plane curves, 2014 , 10 pp., arXiv: 1403.1426 |
96. |
V. S. Kulikov, “Chislenno kratnokanonicheskie tsiklicheskie nakrytiya”, V Rossiisko-armyanskoe soveschanie po matematicheskoi fizike, kompleksnomu analizu i smezhnym voprosam (28 sentyabrya – 3 oktyabrya 2014 g., Erevan), Erevan, 2014, 32–33 |
97. |
V. L. Popov, “Quotients by conjugation action, cross-sections, singularities,and representation rings”, Representation Theory and Analysis of Reductive Groups: Spherical Spaces and Hecke Algebras (Mathematisches Forschungsinstitut Oberwolfach, 19 January – 25 January 2014), Oberwolfach Reports, 11, no. 1, European Mathematical Society, 2014, 156–159 |
98. |
V. L. Popov, “On infinite dimensional algebraic transformation groups”, Transform. Groups, 19:2, special issue dedicated to E. B. Dynkin's 90th anniversary (2014), 549–568 https://www.math.uni-bielefeld.de/LAG/man/523.pdf, arXiv: 1401.0278 (cited: 7) (cited: 1) (cited: 5) |
99. |
V. L. Popov, “Jordan groups and automorphism groups of algebraic varieties”, Automorphisms in birational and affine geometry, Springer Proceedings in Mathematics & Statistics, 79, Springer, 2014, 185–213 https://www.math.uni-bielefeld.de/LAG/man/508.pdf, arXiv: 1307.5522 (cited: 20) |
100. |
N. A. Vavilov, È. B. Vinberg, I. A. Panin, A. N. Panov, A. N. Parshin, V. P. Platonov, V. L. Popov, “Valentin Evgen'evich Voskresenskii (obituary)”, Russian Math. Surveys, 69:4 (2014), 753–754 |
101. |
V. L. Popov, “Jordaness of the automorphism groups of varieties and manifolds”, Modern Problems of Mathematics and Natural Sciences (Koryazhma, September 15–18, 2014), Northern (Arctic) Federal M. V. Lomonosov University, Koryazhma, 2014, 66–70 |
102. |
N. N. Andreev, V. M. Buchstaber, A. I. Garber, V. V. Kozlov, S. P. Konovalov, A. A. Mal'tsev, Yu. V. Nesterenko, S. P. Novikov, A. N. Parshin, I. Kh. Sabitov, A. L. Semenov, A. G. Sergeev, O. K. Sheinman, M. I. Shtogrin, E. V. Shchepin, “Nikolai Petrovich Dolbilin (on his 70th birthday)”, Russian Math. Surveys, 69:1 (2014), 181–182 |
103. |
A. N. Parshin, “A holomorphic version of the Tate-Iwasawa method for unramified $L$-functions. I”, Sb. Math., 205:10 (2014), 1473–1491 (cited: 1) |
104. |
V. A. Lektorskii, A. A. Guseinov, A. L. Nikiforov, A. N. Parshin, A. V. Dybo, S. A. Krylov, A. F. Yakovleva, E. O. Trufanova, S. V. Pirozhkova, I. V. Usoltseva, D. A. Kibalchich, “Mozhno li izmeryat nauchnoe tvorchestvo? (Materialy «kruglogo stola»)”, Voprosy filosofii, 2014, no. 4, 50–74 (cited: 9) |
105. |
V. A. Lektorskii, A. A. Guseinov, A. N. Parshin, S. V. Pirozhkova, V. V. Pirozhkov, “Mozhno li izmeryat nauchnoe tvorchestvo?”, Sotsiologiya, 2014, no. 2, 85–90 |
106. |
S. Gorchinskiy, A. Ovchinnikov, “Isomonodromic differential equations and differential categories”, J. Math. Pures Appl. (9), 102:1 (2014), 48–78 , arXiv: 1202.0927 (cited: 7) (cited: 7) (cited: 11) |
|
2013 |
107. |
F. A. Bogomolov, F. Kataneze, Yu. I. Manin, S. Yu. Nemirovskii, V. V. Nikulin, A. N. Parshin, V. V. Przhiyalkovskii, Yu. G. Prokhorov, M. Teikher, A. S. Tikhomirov, V. M. Kharlamov, I. A. Cheltsov, I. R. Shafarevich, V. V. Shokurov, “Viktor Stepanovich Kulikov (k shestidesyatiletiyu so dnya rozhdeniya)”, UMN, 68:2(410) (2013), 205–207 |
108. |
V. V. Nikulin, “Kählerian K3 surfaces and Niemeier lattices. I”, Izv. Math., 77:5 (2013), 954–997 (cited: 10) (cited: 7) |
109. |
V. V. Nikulin, “Kahlerian K3 surfaces and Niemeier lattices”, The 6th MSJ-SI-Development of Moduli Theory, Conference dedicated to 60th birthday of Mukai (Kyoto, RIMS, 17–21 June 2013), Research Institute of Mathematical Sciences (RIMS), Kyoto University, Japan, 2013, 1 |
110. |
V. V. Nikulin, “Kahlerian K3 surfaces and Niemeier lattices”, Project: Mock modular forms, Moonshine and String Theory, 2013 (New York State, USA, 25 September 2013), Simons Center for Geomery and Physics, Stony Brook University, 2013, 1–1 |
111. |
S. V. Vostokov, S. O. Gorchinskiy, A. B. Zheglov, Yu. G. Zarkhin, Yu. V. Nesterenko, D. O. Orlov, D. V. Osipov, V. L. Popov, A. G. Sergeev, I. R. Shafarevich, “Aleksei Nikolaevich Parshin (on his 70th birthday)”, Russian Math. Surveys, 68:1 (2013), 189–197 |
112. |
D. V. Osipov, “The unramified two-dimensional Langlands correspondence”, Izv. Math., 77:4 (2013), 714–741 , arXiv: 1210.3780 (cited: 3) (cited: 2) (cited: 2) (cited: 3) |
113. |
D. V. Osipov, “Noncommutative reciprocity laws on algebraic surfaces: the case of tame ramification”, Sb. Math., 204:12 (2013), 1797–1810 , arXiv: 1307.1995 |
114. |
D. V. Osipov, “Dvumernoe sootvetstvie Lenglendsa”, Algebra i teoriya chisel: sovremennye problemy i prilozheniya: Tezisy dokladov XI Mezhdunarodnoi konferentsii (Saratov, 9–14 sentyabrya 2013 g.), ISBN 978-5-292-04189-4, Izdatelstvo Saratovskogo universiteta, Saratov, 2013, 64–65 old.sgu.ru/files/nodes2013/67438/Tezis.pdf |
115. |
D. V. Osipov, “Vvedenie v teoriyu vysshikh adelei”, programma lektsii, Letnyaya shkola-konferentsiya po algebraicheskoi geometrii i kompleksnomu analizu dlya molodykh uchenykh Rossii (Yaroslavl, YaGPU, 20–25 maya 2013 g.), Matematicheskii institut im. V. A. Steklova RAN, Moskva, 2013, 8–9 |
116. |
D. V. Osipov, Kategornye metody v teorii vysshikh adelei i ikh primenenie, Diss. … dokt. fiz.-matem. nauk, Matematicheskii institut im. V. A. Steklova RAN, Moskva, 2013 , 195 pp. avtoreferat dissertatsii |
117. |
Vik. S. Kulikov, “Factorizations in finite groups”, Sb. Math., 204:2 (2013), 237–263 (cited: 3) (cited: 1) |
118. |
Vik. S. Kulikov, V. M. Kharlamov, “Covering semigroups”, Izv. Math., 77:3 (2013), 594–626 (cited: 5) (cited: 1) (cited: 1) (cited: 3) |
119. |
F. Bogomolov, V. S. Kulikov, “On the irreducibility of Hilbert scheme of surfaces of minimal degree”, Cent. Eur. J. Math., 11:2 (2013), 254–263 (cited: 1) (cited: 1) (cited: 1) |
120. |
Vik. S. Kulikov, “Covering semigroups”, Complex Algebraic Geometry (Mathematisches Forschungsinstitut Oberwolfach, 26 May – 1 June 2013), Oberwolfach Reports, Report No. 27/2013, 10, no. 2, European Mathematical Society, 2013, 1595–1598 http://www.mfo.de/occasion/1322/www_view |
|
2014 |
121. |
I. R. Shafarevich, “A problem about the tenth discriminant”, St. Petersburg Math. J., 25:4 (2014), 699–711 (cited: 1) (cited: 1) |
|
2013 |
122. |
V. L. Popov, “Tori in the Cremona groups”, Izv. Math., 77:4, special issue on the occasion of I. R. Shafarevich's 90th anniversary (2013), 742–771 https://www.math.uni-bielefeld.de/LAG/man/474.pdf (cited: 6) (cited: 2) (cited: 2) (cited: 3) |
123. |
V. L. Popov, “Some subgroups of the Cremona groups”, Affine algebraic geometry, Proceedings of the conference on the occasion of M. Miyanishi's 70th birthday (Osaka, Japan, 3–6 March 2011), World Scientific Publishing Co., Singapore, 2013, 213–242 https://www.math.uni-bielefeld.de/LAG/man/448.pdf (cited: 8) |
124. |
V. L. Popov, “Algebraic groups and the Cremona group”, Algebraic groups (Mathematisches Forschungsinstitut Oberwolfach, 7 April – 13 April 2013), Oberwolfach Reports, 10, no. 2, European Mathematical Society, 2013, 1053–1055 |
125. |
V. L. Popov, “Rationality and the FML invariant”, Journal of the Ramanujan Mathematical Society, 28A (2013), 409–415 http://www.mathjournals.org/jrms/2013-028-000/2013-28A-SPL-017.html, https://www.math.uni-bielefeld.de/LAG/man/485.pdf (special Issue-2013 dedicated to C. S. Seshadri's 80th birthday) (cited: 2) |
126. |
A. N. Parshin, “Generalizations of the Langlands program”, Lecture course, The Langlands program and adelic theory (June 1–8, 2013, SPb), Euler Mathematical Institute, 2013 , http://www.pdmi.ras.ru/EIMI/2013/Lpat/schedule.html |
127. |
A. N. Parshin, “Base change and automorphic induction in relative dimension 1”, The Langlands program and adelic theory (June 10–14, 2013, SPb), Euler Mathematical Institute, 2013 , http://www.pdmi.ras.ru/EIMI/2013/Lpat/abstracts.pdf |
128. |
A. N. Parshin, “Teoriya predstavlenii i algebraicheskaya geometriya (novyi vzglyad na starye zadachi)”, I. M. Gelfand i sovremennaya matematika (17–19 dekabrya 2013 g.), MGU, 2013 , http://gelfand100.mech.math.msu.su/cgi-bin/gelfand100.fcgi?lang=ru&page=abstracts |
129. |
A. N. Parshin, O tak nazyvaemykh reformakh (intervyu), Expert-online, 2 iyulya, 2013 http://expert.ru/2013/07/2/uchenyie-o-reforme-ran-chast-3/ |
130. |
A. N. Parshin (sost.), Rossiiskaya Akademiya nauk. Khronika protesta. Iyun-iyul 2013, Nauka, M., 2013 , 368 pp. http://www.mi.ras.ru/news/13/RANprotest2013_2ed-1.pdf |
131. |
A. N. Parshin, Kak izmeryat uchenykh?, Russkii reporter, 22 oktyabrya, 2013 http://rusrep.ru/article/2013/10/22/ran/ |
132. |
A. N. Parshin, Urok angliiskogo dlya ministra obrazovaniya, Ekho Moskvy, 23 oktyabrya, 2013 http://echo.msk.ru/blog/parshin_a/1183156-echo/ |
133. |
A. N. Parshin, Akademiya dolzhna govorit o sebe gromko: RAN = S-300, Ekho Moskvy, 16 noyabrya, 2013 http://echo.msk.ru/blog/parshin_a/1199317-echo/ |
134. |
S. Gorchinskiy, V. Guletskii, “Non-trivial elements in the Abel–Jacobi kernels of higher-dimensional varieties”, Adv. Math., 241 (2013), 162–191 , arXiv: 1009.1431 (cited: 1) (cited: 1) |
135. |
H. Gillet, S. Gorchinskiy, A. Ovchinnikov, “Parameterized Picard–Vessiot extensions and Atiyah extensions”, Adv. Math., 238 (2013), 322–411 , arXiv: 1110.3526 (cited: 21) (cited: 14) (cited: 26) |
136. |
S. Gorchinskiy, D. Orlov, “Geometric phantom categories”, Publ. Math. Inst. Hautes Études Sci., 117:1 (2013), 329–349 , arXiv: 1209.6183 (cited: 18) (cited: 7) (cited: 16) |
137. |
S. O. Gorchinskiy, “Generation of modules and transcendence degree of zero-cycles”, Izv. Math., 77:4 (2013), 696–699 |
138. |
R. Ya. Budylin, S. O. Gorchinskiy, “Intersections of adelic groups on a surface”, Sb. Math., 204:12 (2013), 1701–1711 (cited: 1) (cited: 2) |
|
2012 |
139. |
Vik. S. Kulikov, “Factorization semigroups and irreducible components of the Hurwitz space. II”, Izv. Math., 76:2 (2012), 356–364 (cited: 4) (cited: 4) (cited: 4) (cited: 2) |
140. |
F. Bogomolov, V. S. Kulikov, “On the diffeomorphic type of the complement to a line arrangement in a projective plane”, Cent. Eur. J. Math., 10:2 (2012), 521–529 (cited: 1) |
141. |
Vik. S. Kulikov, “Appendix to the paper: Yu. G. Zarhin, ‘Polynomials in one variable and ranks of certain tangent maps’”, Math. Notes, 91:4 (2012), 514–516 (cited: 2) (cited: 3) |
142. |
V. S. Kulikov, Yu. G. Prokhorov, I. A. Cheltsov, “Predislovie”, Iskovskikh, Vasilii Alekseevich. Algebraicheskie poverkhnosti: geometriya i arifmetika, MTsNMO, M., 2012 |
143. |
D. V. Anosov, V. A. Vassiliev, V. S. Vladimirov, R. V. Gamkrelidze, A. A. Gonchar, V. A. Il'in, V. V. Kozlov, A. V. Kryazhimskiy, S. M. Nikol'skii, A. N. Parshin, V. M. Filippov, I. R. Shafarevich, “Lev Dmitrievich Kudryavtsev (obituary)”, Russian Math. Surveys, 67:3 (2012), 569–571 |
144. |
I. R. Shafarevich, A. Remizov, Linear algebra and geometry, Springer-Verlag, Berlin, 2012 |
145. |
V. L. Popov, Editor's preface to the Russian translation of the book: D. A. Cox, S. Katz, Mirror symmetry and algebraic geometry, ed. V. L. Popov, MCCME, Moscow, 2012, 5 |
146. |
V. L. Popov, “Problems for the problem session”, International conference “Groups of Automorphisms in Birational and Affine Geometry” (Levico Terme (Trento), October 29th – November 3rd, 2012), 2012 , 2 pp. http://www.science.unitn.it/cirm/Trento_postersession.html |
147. |
Teoriya chisel, algebra i analiz, Sbornik statei. K 75-letiyu so dnya rozhdeniya professora Anatoliya Alekseevicha Karatsuby, Tr. MIAN, 276, ed. A. N. Parshin, A. G. Sergeev, MAIK «Nauka/Interperiodika», M., 2012 , 288 pp. |
148. |
A. N. Parshin, “Questions and remarks to the Langlands programme”, Russian Math. Surveys, 67:3 (2012), 509–539 (cited: 3) (cited: 3) (cited: 3) (cited: 2) |
149. |
S. A. Arnal', A. N. Parshin, “On irreducible representations of discrete Heisenberg groups”, Math. Notes, 92:3 (2012), 295–301 (cited: 5) (cited: 5) (cited: 5) (cited: 4) |
150. |
S. Gorchinskiy, V. Guletskii, “Motives and representability of algebraic cycles on threefolds over a field”, J. Algebraic Geom., 21:2 (2012), 347–373 , arXiv: 0806.0173v2 (cited: 15) (cited: 8) (cited: 15) |
151. |
S. Gorchinskiy, V. Guletskii, “Transcendence degree of zero-cycles and the structure of Chow motives”, Cent. Eur. J. Math., 10:2 (2012), 559–568 , arXiv: 1009.1434 (cited: 1) (cited: 1) (cited: 1) |
|
2011 |
152. |
V. V. Nikulin, “The transition constant for arithmetic hyperbolic reflection groups”, Izv. Math., 75:5 (2011), 971–1005 (cited: 4) (cited: 1) (cited: 1) (cited: 2) |
153. |
Viacheslav V. Nikulin, “Self-correspondences of K3 surfaces via moduli of sheaves and arithmetic hyperbolic reflection groups”, Proc. Steklov Inst. Math., 273 (2011), 229–237 (cited: 1) |
154. |
D. V. Osipov, A. N. Parshin, “Harmonic analysis on local fields and adelic spaces. II”, Izv. Math., 75:4 (2011), 749–814 , arXiv: 0912.1577 (cited: 11) (cited: 3) (cited: 3) (cited: 6) |
155. |
Denis Osipov, Xinwen Zhu, “A categorical proof of the Parshin reciprocity laws on algebraic surfaces”, Algebra Number Theory, 5:3 (2011), 289–337 , arXiv: 1002.4848 (cited: 9) (cited: 10) |
156. |
D. V. Osipov, A. N. Parshin, “Harmonic analisys and the Riemann-Roch theorem”, Dokl. Math., 84:3 (2011), 826–829 , arXiv: 1107.0408 (cited: 3) (cited: 3) (cited: 3) (cited: 2) |
157. |
Vik. S. Kulikov, “Factorization semigroups and irreducible components of the Hurwitz space”, Izv. Math., 75:4 (2011), 711–748 (cited: 6) (cited: 6) (cited: 6) (cited: 4) |
158. |
J.-L. Colliot-Thélène, B. Kunyavskiĭ, V. L. Popov, Z. Reichstein, “Is the function field of a reductive Lie algebra purely transcendental over the field of invariants for the adjoint action?”, Compos. Math., 147:2 (2011), 428–466 (cited: 8) (cited: 6) |
159. |
V. L. Popov, “Cross-sections, quotients, and representation rings of semisimple algebraic groups”, Transform. Groups, 16:3, special issue dedicated to Tonny Springer on the occasion of his 85th birthday (2011), 827–856 (cited: 4) (cited: 4) (cited: 4) |
160. |
V. L. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry: the Russell Festschrift, CRM Proceedings and Lecture Notes, 54, Amer. Math. Soc., 2011, 289–311 https://www.math.uni-bielefeld.de/LAG/man/375.pdf (cited: 21) |
161. |
V. L. Popov, “Invariant rational functions on semisimple Lie algebras and the Gelfand–Kirillov conjecture”, Algebra and Mathematical Logic, International conference commemorating $100$th birthday of professor V. V. Morozov (Kazan, September 25–30, 2011), Kazan Federal Univ., Kazan, 2011, 19 |
162. |
D. A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, Subseries Invariant Theory and Algebraic Transformation Groups, VIII, 138, eds. R. V. Gamkrelidze, V. L. Popov, Springer, Berlin, 2011 , 253 pp. |
163. |
H. E. A. E. Campbell, D. L. Wehlau, Modular invariant theory, Encyclopaedia of Mathematical Sciences, Subseries Invariant Theory and Algebraic Transformation Groups, IX, 139, eds. R. V. Gamkrelidze, V. L. Popov, Springer, Berlin, 2011 , 233 pp. |
|
2012 |
164. |
A. N. Parshin, “Notes on the Poisson formula”, St. Petersburg Math. J., 23:5 (2012), 781–818 (cited: 2) (cited: 3) (cited: 3) (cited: 2) |
|
2011 |
165. |
A. N. Parshin, “Mathematics in Moscow: we had a great epoch”, Istor.-Mat. Issled. (2), 2011, no. 14(49), 11–25 |
166. |
A. N. Parshin (sost., red.), Igra v tsyfir ili kak teper otsenivayut trud uchenogo, MTsNMO, M., 2011 http://www.mccme.ru/free-books/bibliometric.pdf |
|
|