|
|
|
Department of Theoretical Physics
| Seminars |
History of the Department |
Research Fields |
Publications |
|
|
Staff
|
Slavnov Nikita Andreevich  Doctor Phys.-Math. Sci., Head of Department, Leading Scientific Researcher
office: 402; tel.: +7 (495) 984 81 41 * 39 73; e-mail: nslavnov@mi-ras.ru
|
 |
Aref'eva Irina Yaroslavna  Doctor Phys.-Math. Sci., Professor, Leading Scientific Researcher
office: 418; tel.: +7 (499) 941 01 87, +7 (495) 984 81 41 * 36 72; e-mail: arefeva@mi-ras.ru Personal page: http://www.mi-ras.ru/~arefeva
|
|
Bykov Dmitrii Vladimirovich Doctor Phys.-Math. Sci, Leading Scientific Researcher
office: 412; tel.: +7 (495) 984 81 41 * 37 91; e-mail: bykov@mi-ras.ru Personal page: http://www.mi-ras.ru/~dbykov
|
|
Chekhov Leonid Olegovich Doctor Phys.-Math. Sci., Leading Scientific Researcher
office: 402; tel.: +7 (495) 984 81 41 * 39 73; e-mail: chekhov@mi-ras.ru
|
|
Matushko Mariya Georgievna Candidate Phys.-Math. Sci., Scientific Researcher
e-mail: matushkom@mail.ru
|
|
Pavlov Vladimir Petrovich Doctor Phys.-Math. Sci., Leading Scientific Researcher
office: 402; tel.: +7 (495) 984 81 41 * 39 73; e-mail: pavlov@mi-ras.ru
|
|
Pogrebkov Andrei Konstantinovich Doctor Phys.-Math. Sci., Leading Scientific Researcher
office: 419; tel.: +7 (495) 984 81 41 * 37 92; e-mail: pogreb@mi-ras.ru
|
|
Sechin Ivan Andreevich Junior Researcher
e-mail: shnbuz@gmail.com
|
|
Slavnov Andrei Alekseevich Doctor Phys.-Math. Sci., Professor, Academician of RAS, Chief Scientific Researcher
office: 403; tel.: +7 (495) 984 81 46, +7 (495) 984 81 41 * 37 91; e-mail: slavnov@mi-ras.ru
|
|
Zotov Andrei Vladimirovich  Doctor Phys.-Math. Sci., Leading Scientific Researcher
office: 412; tel.: +7 (495) 984 81 41 * 39 73; e-mail: zotov@mi-ras.ru
|
|
|
Arutyunov Gleb Eduardovich Candidate Phys.-Math. Sci., Out-Of-Staff Member
e-mail: arut@gft.mian.su
|
|
Frolov Sergei Anatol'evich Candidate Phys.-Math. Sci., Out-Of-Staff Member
e-mail: frolovs@maths.tcd.ie
|
|
|
Zinoviev Yurii Mikhailovich (5.01.1948 – 14.01.2014) Doctor Phys.-Math. Sci.
Principal fields of research:
Distributions. Representation theory. Statistical physics.
|
 |
|
Top |
Seminars
|
Top |
History of the Department
The Department of Theoretical Physics was organized at the Steklov Mathematical
Institute in 1947, with N. N. Bogolyubov as the Head of Department.
N. N. Bogolyubov invited to the Department many of his students
and colleagues and in 1992, after more then forty years, there
were already three Departments based on the Department of Theoretical
Physics, namely, the Departments of Mathematical Physics, of Statistical
Mechanics, and of Quantum Field Theory. The Department of Quantum Field
Theory was organized in 1969, and until 1992 the Head of the Department
was M. K. Polivanov. Since 1992, the Head of the Department is
A. A. Slavnov.
In 2002, the Department of Quantum Field Theory was
reorganized as the Department of Theoretical Physics.
From the beginning, the main research area in the Department is the development
of quantum field theory, especially its mathematical tools. The researchers
working in the Department made a fundamental contribution to the
development of quantum field theory and putting this theory into shape of the
consistent theory with its own specific methods. The works of
N. N. Bogolyubov and his school are of the utmost importance for this, namely,
the works on renormalization theory, on renormalization group, on
axiomatic S-matrix theory, and on the theory of dispersion relations.
The corresponding results were summed up in the following monographs:
- N. N. Bogolyubov and D. V. Shirkov,
- Theory of Quantized Fields, Moscow, Gosud. Izdat. Tekhn.-Teor. Lit, 1957, 442 p.
- N. N. Bogolyubov, B. V. Medvedev, and M. K. Polivanov,
- Problems of the Theory of Dispersion Relations,
Moscow, Fiz. Mat. Giz., 1958, 203 p. (Current Problems in Mathematics).
- N. N. Bogolyubov, A. A. Logunov, I. T. Todorov, and A. I. Oksak,
- Axiomatic Approach in Quantum Field Theory, Moscow, Nauka, 1969, 424 p.
- O. I. Zavialov,
- Renormalized Feynman Diagrams, Moscow, Nauka, 1979, 317 p.
Starting from the 1960s, the main progress in quantum field theory is associated with the
development of gauge field theory. The gauge field theory gives an opportunity to describe
all the known types of particle interactions from a unified geometrical point of view.
Based on gauge field theory, the consistent theory of strong, weak
and electro-weak interactions was constructed, which is known as Standard Model.
At present, the most active researches are connected with constructing the unified
theory that incorporate all types of interactions, including gravitation, and be based on models
of relativistic strings which generalize gauge field theory to lengthy systems.
Pioneering investigations in quantum theory of gauge fields were
carried out in the Department. Based on relations between Green functions, A. A. Slavnov
constructed gauge invariant renormalization procedure known as
`Slavnov–Taylor identities'.
The first comprehensive exposition of the quantum gauge field theory was given in the monograph
- A. A. Slavnov and L. D. Faddeev,
- Introduction to Quantum Theory of Gauge Fields, Moscow, Nauka, 1978, 239 p.
Futher development of quantum field theory as whole is associated both
with the perfection and profound study of methods of perturbation theory
and with developing new methods which are not based on the perturbation
expansions in terms of low coupling constant. Among these methods are
lattice gauge theory, expansions in terms of number of colours in quantum
chromodynamics, theory of completely integrable systems, and models of
relativistic strings. The researchers working in the Department participate
actively in these studies. Actual problems of quantum filed theory are discussed
at the weekly working seminar of the Department. The members of the Department
lecture at Moscow State University and Moscow Independent University, as well as are
at the head of the students and the post graduate students works. |
Top |
Research Fields
The main directions of scientific activity of the Department are as follows:
quantum field theory, gauge fields, superstrings and branes, general theory of
systems with constraints, non-perturbative methods, lattice models, completely
integrable systems, conformally invariant theories, and matrix models.
The following topics are under active investigations:
- Problems of renormalization theory (A. A. Slavnov,
I. Ya. Aref'eva, O. I. Zav'yalov).
- Theories of superstrings and D-branes, duality between gauge theories and superstring models
(I. Ya. Aref'eva, G. Ed. Arutyunov, S. A. Frolov).
- Theory of systems with constraints (A. A. Slavnov, V. P. Pavlov).
- Completely integrable classical and quantum systems
(A. K. Pogrebkov, N. A. Slavnov, L. O. Chekhov).
- Lattice models of quantum field theory (A. A. Slavnov, Yu. M. Zinoviev).
|
Recent publications
Steklov Mathematical Institute staff
Steklov Mathematical Institute staff and out-of-staff employees
|
1. |
V. P. Pavlov, V. M. Sergeev, R. V. Shamin, TMF (to appear) |
2. |
I. A. Sechin, A. V. Zotov, TMF (to appear) |
|
2021 |
3. |
Leonid Chekhov, Marta Mazzocco, Vladimir Rubtsov, “Quantised Painlevé monodromy manifolds, Sklyanin and Calabi–Yau algebras”, Adv. Math., 376 (2021), 107442 , 52 pp. (cited: 1); |
4. |
I.Ya. Arefeva, “Theoretical studies of the formation and properties of quark-gluon matter under conditions of high baryon densities attainable at the NICA experimental complex”, Phys. Part. Nucl., 2021 (to appear) |
5. |
I. Ya. Aref'eva, K. Rannu, P. S. Slepov, “Anisotropic solutions for a holographic heavy-quark model with an external magnetic field”, Theoret. and Math. Phys., 207:1 (2021), 434–446 |
6. |
I. Ya. Aref'eva, K. Rannu, P. S. Slepov, “Spatial Wilson loops in a fully anisotropic model”, Theoret. and Math. Phys., 206:3 (2021), 349–356 |
7. |
K. Atalikov, A. Zotov, “Field theory generalizations of two-body Calogero–Moser models in the form of Landau–Lifshitz equations”, J. Geom. Phys., 164 (2021), 104161 , 14 pp., arXiv: 2010.14297 ; |
8. |
A. Grekov, A. Zotov, “Characteristic determinant and Manakov triple for the double elliptic integrable system”, SciPost Phys., 10:3 (2021), 055 , 34 pp., arXiv: 2010.08077 ; |
|
2020 |
9. |
Leonid O. Chekhov, “Symplectic Structures on Teichmüller Spaces $\mathfrak T_{g,s,n}$ and Cluster Algebras”, Proc. Steklov Inst. Math., 309 (2020), 87–96 (cited: 1) (cited: 1) |
10. |
L. O. Chekhov, “Fenchel–Nielsen coordinates and Goldman brackets”, Russian Math. Surveys, 75:5 (2020), 929–964 |
11. |
Sovremennye problemy matematicheskoi i teoreticheskoi fiziki, Sbornik statei. K 80-letiyu so dnya rozhdeniya akademika Andreya Alekseevicha Slavnova, Trudy MIAN, 309, ed. A. K. Pogrebkov, N. A. Slavnov, A. A. Belavin, A. V. Zotov, I. V. Tyutin, MIAN, M., 2020 , 346 pp. |
12. |
A. K. Pogrebkov, “Induced Dynamics”, J. Nonlinear Math. Phys., 27:2 (2020), 324–336 (cited: 1) (cited: 1); |
13. |
A. K. Pogrebkov, “Commutator identities and integrable hierarchies”, Theoret. and Math. Phys., 205:3 (2020), 1585–1592 |
14. |
V. E. Adler, S. N. Askhabov, R. Ch. Kulaev, A. G. Kusraev, S. S. Kutateladze, A. K. Pogrebkov, Yu. G. Reshetnyak, “In Memory of Alexei Borisovich Shabat (08.08.1937–24.03.2020)”, Vladikavkaz. Mat. Zh., 22:2 (2020), 100–102 |
15. |
A. K. Pogrebkov, “Multiplicative dynamical systems in terms of the induced dynamics”, Theoret. and Math. Phys., 204:3 (2020), 1201–1208 |
16. |
N. Slavnov, A. Zabrodin, A. Zotov, “Scalar products of Bethe vectors in the 8-vertex model”, JHEP, 2020:6 (2020), 123 , 53 pp., arXiv: 2005.11224 (cited: 1) (cited: 1); |
17. |
N. A. Slavnov, Theoret. and Math. Phys., 204:3 (2020), 1216–1226 |
18. |
N. A. Slavnov, “Introduction to the nested algebraic Bethe ansatz”, SciPost Phys. Lect. Notes, 19 (2020) (Published online) , arXiv: 1911.12811 ; (Published online) |
19. |
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Actions of the monodromy matrix elements onto $\mathfrak{gl}(m|n)$-invariant Bethe vectors”, J. Stat. Mech., 2020, 93104 , 31 pp. (cited: 1) (cited: 1); |
20. |
N. A. Slavnov, “Introduction to the Algebraic Bethe Ansatz”, Geometric Methods in Physics XXXVIII (Białowieza, Poland, 2019), Trends Math., eds. P. Kielanowski, A. Odzijewicz, E. Previato, Birkhäuser, Cham, 2020, 363–371 ; |
21. |
I. Ya. Aref'eva, K. Rannu, “Holographic renormalization group flow in anisotropic matter”, Theoret. and Math. Phys., 202:2 (2020), 272–283 |
22. |
Irina Aref'eva, Igor Volovich, “Gas of baby universes in JT gravity and matrix models”, Symmetry, 12:6 (2020), 975 , 17 pp., arXiv: 1905.08207 (cited: 1) (cited: 1); |
23. |
Irina Ya. Aref'eva, Alexander Patrushev, Pavel Slepov, “Holographic entanglement entropy in anisotropic background with confinement-deconfinement phase transition”, JHEP, 2020 (2020), 43 , 59 pp., arXiv: 2003.05847 (cited: 4) (cited: 4); |
24. |
Irina Arefeva, Kristina Rannu, Pavel Slepov, Holographic Anisotropic Model for Light Quarks with Confinement-Deconfinement Phase Transition, 2020 , 25 pp., arXiv: 2009.05562 |
25. |
I. Ya. Aref'eva, “Holography for Nonperturbative Study of QFT”, Phys. Part. Nucl., 51:4 (2020), 489–496 |
26. |
I. Ya. Aref'eva, A. A. Golubtsova, E. Gourgoulhon, “On the Drag Force of a Heavy Quark via 5d Kerr-AdS Background”, Phys. Part. Nucl., 51:4 (2020), 535–539 |
27. |
Irina Ya. Arefeva, Kristina Rannu and Pavel Slepov, Holographic Anisotropic Model for Heavy Quarks in Anisotropic Hot Dense QGP with External Magnetic Field, 2020 , 38 pp., arXiv: 2011.07023 |
28. |
I.Y. Arefeva, A.A. Golubtsova and E. Gourgoulhon, Holographic drag force in 5d Kerr-AdS black hole, 2020 , 26 pp., arXiv: 2004.12984 |
29. |
Irina Ya. Arefeva, Kristina Rannu and Pavel Slepov, Energy Loss in Holographic Anisotropic Model for Heavy Quarks in External Magnetic Field, 2020 , 35 pp., arXiv: 2012.05758 |
30. |
Dmitri V. Bykov, “Flag Manifold Sigma Models and Nilpotent Orbits”, Proc. Steklov Inst. Math., 309 (2020), 78–86 |
31. |
Ismail Achmed-Zade, Dmitri Bykov, “Ricci-flat metrics on vector bundles over flag manifolds”, Comm. Math. Phys., 376:3 (2020), 2309–2328 , arXiv: 1905.00412 ; |
32. |
Dmitri Bykov, Paul Zinn-Justin, “Higher spin $\mathfrak{sl}_2 R$-matrix from equivariant (co)homology”, Lett. Math. Phys., 110 (2020), 2435–2470 , arXiv: 1904.11107 ; |
33. |
D. Bykov, D. Lüst, Deformed sigma-models, Ricci flow and Toda field theories, 2020 , arXiv: 2005.01812 |
34. |
D. Bykov, Quantum flag manifold sigma-models and Hermitian Ricci flow, 2020 , arXiv: 2006.14124 |
35. |
D. Bykov, The $CP^{n-1}$-model with fermions: a new look, 2020 , arXiv: 2009.04608 |
36. |
M. Vasilyev, A. Zabrodin, A. Zotov, “Quantum-classical duality for Gaudin magnets with boundary”, Nuclear Phys. B, 952 (2020), 114931 , 20 pp., arXiv: 1911.11792 (cited: 1) (cited: 1); |
37. |
A. Levin, M. Olshanetsky, A. Zotov, “Odd supersymmetrization of elliptic $R$-matrices”, J. Phys. A, 53:18 (2020), 185202 , 16 pp., arXiv: 1910.05712 ; |
38. |
I. A. Sechin, A. V. Zotov, “Integrable system of generalized relativistic interacting tops”, Theoret. and Math. Phys., 205:1 (2020), 1292–1303 , arXiv: 2011.09599 |
39. |
A. Levin, M. Olshanetsky, A. Zotov, “Odd supersymmetric Kronecker elliptic function and Yang–Baxter equations”, J. Math. Phys., 61 (2020), 103504 , 9 pp., arXiv: 1910.01814 ; |
40. |
M. Vasilyev, A. Zabrodin, A. Zotov, “Quantum-classical correspondence for gl(1|1) supersymmetric Gaudin magnet with boundary”, J. Phys. A, 53:49 (2020), 494002 , 20 pp., arXiv: 2006.06717 ; |
41. |
M. G. Matushko, “Calogero–Sutherland system at a free fermion point”, Theoret. and Math. Phys., 205:3 (2020), 1593–1610 |
|
2019 |
42. |
L. Chekhov, P. Norbury, “Topological recursion with hard edges”, Int. J. Math., 30:3 (2019), 1950014 , 29 pp., arXiv: 1702.08631 (cited: 1) (cited: 1); |
43. |
Andrei Pogrebkov, “Hirota Difference Equation and Darboux System: Mutual Symmetry”, Symmetry, 11:3 (2019), 436 , 11 pp. (cited: 2) (cited: 2) |
44. |
A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “New symmetries of ${\mathfrak{gl}(N)}$-invariant Bethe vectors”, J. Stat. Mech., 2019 (2019), 044001 , 24 pp., arXiv: 1810.00364 (cited: 1) (cited: 6) (cited: 7) |
45. |
A. N. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors for orthogonal integrable models”, Theoret. and Math. Phys., 201:2 (2019), 1543–1562 , arXiv: 1906.03202 (cited: 2) (cited: 2) |
46. |
S. Belliard and N. A. Slavnov, “Scalar Products in Twisted XXX Spin Chain. Determinant Representation”, SIGMA, 15 (2019), 066 , 30 pp., arXiv: 1906.06897 (cited: 4) (cited: 4) (cited: 4) |
47. |
S. Belliard, N. A. Slavnov, “Why scalar products in the algebraic Bethe ansatz have determinant representation”, JHEP, 2019:10 (2019), 103 , 17 pp., arXiv: 1908.00032 (cited: 4) (cited: 6) |
48. |
Irina Ya. Aref'eva and Igor V. Volovich, “Holographic photosynthesis and entanglement entropy”, Proceedings of QP38 (Japan, October, 2017), 2019 (to appear) |
49. |
Dmitry S. Ageev, Irina Ya. Aref'eva, “When things stop falling, chaos is suppressed”, JHEP, 2019:1 (2019), 100 , 9 pp., arXiv: 1806.05574 (cited: 6) (cited: 6) |
50. |
Irina Aref'eva, Kristina Rannu, Pavel Slepov, “Orientation dependence of confinement-deconfinement phase transition in anisotropic media”, Phys. Lett. B, 792 (2019), 470–475 (cited: 9) (cited: 8) |
51. |
Irina Ya. Aref'eva, Anastasia A. Golubtsova, Giuseppe Policastro, “Exact holographic RG flows and the $A_1\times A_1$ Toda chain”, JHEP, 2019:5 (2019), 117 , 50 pp., arXiv: hep-th/1803.06764 (cited: 3) (cited: 3) |
52. |
I. Ya. Aref'eva, I. V. Volovich, “Quasi-averages in Random Matrix Models”, Proc. Steklov Inst. Math., 306 (2019), 1–8 (cited: 1) (cited: 1) |
53. |
Irina Arefeva, Mikhail Khramtsov, Maria Tikhanovskaya, Igor Volovich, “Replica-nondiagonal solutions in the SYK model”, JHEP, 2019 (2019), 113 , 59 pp., arXiv: 1811.04831 (cited: 10) (cited: 14) |
54. |
I. Ya. Aref'eva, “Holographic renormalization group flows”, Theoret. and Math. Phys., 200:3 (2019), 1313–1323 (cited: 2) (cited: 2) |
55. |
I. Ya. Aref'eva, I. V. Volovich, M. A. Khramtsov, “Revealing nonperturbative effects in the SYK model”, Theoret. and Math. Phys., 201:2 (2019), 1583–1603 (cited: 2) (cited: 3) |
56. |
Irina Aref'eva, Igor Volovich, “Spontaneous symmetry breaking in fermionic random matrix model”, JHEP, 2019 (2019), 114 , 12 pp., arXiv: 1902.09970 (cited: 3) (cited: 4) |
57. |
I. Ya. Aref'eva, “Holographic Entanglement Entropy for Heavy-Ion Collisions”, Phys. Part. Nucl. Lett., 16:5 (2019), 486–492 (cited: 3) (cited: 3) |
58. |
D. S. Ageev, I. Ya. Aref'eva, A. V. Lysukhina, “Wormholes in Jackiw–Teitelboim gravity”, Theoret. and Math. Phys., 201:3 (2019), 1779–1792 |
59. |
Irina Aref'eva, Kristina Rannu, Pavel Slepov, “Cornell potential for anisotropic QGP with non-zero chemical potential”, The XXIV International Workshop “High Energy Physics and Quantum Field Theory” (QFTHEP 2019), EPJ Web of Conf., 222, 2019, 3023 , 6 pp. ; |
60. |
Irina Aref'eva, “Theoretical Studies of Heavy Ion Collisions via Holography”, The XXIV International Workshop “High Energy Physics and Quantum Field Theory” (QFTHEP 2019), EPJ Web of Conf., 222, 2019, 1008 , 11 pp. ; |
61. |
Dmitri Bykov, “Flag manifold $\sigma$-models: The $\frac1{N}$-expansion and the anomaly two-form”, Nuclear Phys. B, 941 (2019), 316–360 , arXiv: 1901.02861 (cited: 7) (cited: 4) |
62. |
D. Bykov, Flag manifold sigma-models and nilpotent orbits, 2019 , 12 pp., arXiv: 1911.07768 |
63. |
A. Grekov, A. Zabrodin, A. Zotov, “Supersymmetric extension of qKZ-Ruijsenaars correspondence”, Nuclear Phys. B, 939 (2019), 174–190 , arXiv: 1810.12658 (cited: 4) (cited: 4) |
64. |
Yu. Chernyakov, S. Kharchev, A. Levin, M. Olshanetsky, A. Zotov, “Generalized Calogero and Toda models”, JETP Letters, 109:2 (2019), 136–143 |
65. |
I. A. Sechin, A. V. Zotov, “${\rm GL}_{NM}$ quantum dynamical $R$-matrix based on solution of the associative Yang–Baxter equation”, Russian Math. Surveys, 74:4 (2019), 767–769 , arXiv: 1905.08724 (cited: 1) (cited: 1) |
66. |
T. Krasnov, A. Zotov, “Trigonometric Integrable Tops from Solutions of Associative Yang–Baxter Equation”, Ann. Henri Poincaré, 20:8 (2019), 2671–2697 , arXiv: 1812.04209 (cited: 2) (cited: 4) |
67. |
A. V. Zotov, “Relativistic interacting integrable elliptic tops”, Theoret. and Math. Phys., 201:2 (2019), 1563–1578 , arXiv: 1910.08246 (cited: 1) (cited: 2) |
68. |
A. Grekov, I. Sechin, A. Zotov, “Generalized model of interacting integrable tops”, JHEP, 2019:10 (2019), 81 , 33 pp., arXiv: 1905.07820 (cited: 2) (cited: 4) |
69. |
M. Vasilyev, A. Zotov, “On factorized Lax pairs for classical many-body integrable systems”, Rev. Math. Phys., 31:6 (2019), 1930002 , 45 pp., arXiv: 1804.02777 (cited: 3) (cited: 2) |
|
2018 |
70. |
Leonid Chekhov, Marta Mazzocco, “Colliding holes in Riemann surfaces and quantum cluster algebras”, Nonlinearity, 31:1 (2018), 54–107 , arXiv: 1509.07044v4 (cited: 8) (cited: 7) |
71. |
J. Ambjørn, L. Chekhov, Y. Makeenko, “Perturbed generalized multicritical one-matrix models”, Nuclear Phys. B, 928 (2018), 1–20 |
72. |
Jan Ambjørn, Leonid O. Chekhov, “Spectral curves for hypergeometric Hurwitz numbers”, J. Geom. Phys., 132 (2018), 382–392 (cited: 3) (cited: 3) |
73. |
R. Ch. Kulaev, A. K. Pogrebkov, A. B. Shabat, “Darboux system: Liouville reduction and an explicit solution”, Proc. Steklov Inst. Math., 302 (2018), 250–269 (cited: 3) (cited: 4) |
74. |
A. K. Pogrebkov, “Higher Hirota difference equations and their reductions”, Theoret. and Math. Phys., 197:3 (2018), 1779–1796 (cited: 1) (cited: 1) |
75. |
R. Ch. Kulaev, A. K. Pogrebkov, A. B. Shabat, “Darboux system as three-dimensional analog of Liouville equation”, Russian Mathematics, 62:12 (2018), 50–58 (cited: 1) (cited: 2) |
76. |
A. A. Slavnov, “Renormalizability and unitarity of the Englert–Broute–Higgs–Kibble model”, Theoret. and Math. Phys., 197:2 (2018), 1611–1614 |
77. |
A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov, “Norm of Bethe vectors in models with $\mathfrak{gl}(m|n)$ symmetry”, Nuclear Phys. B, 926 (2018), 256–278 , arXiv: 1705.09219 (cited: 7) (cited: 5) |
78. |
Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Scalar products and norm of Bethe vectors for integrable models based on $U_q(\widehat{\mathfrak{gl}}_n)$”, SciPost Phys., 4 (2018), 6 , 30 pp., arXiv: 1711.03867 (cited: 9) |
79. |
A. Liashyk, N. A. Slavnov, “On Bethe vectors in $\mathfrak{gl}_3$-invariant integrable models”, Journal of High Energy Physics, 2018, 2018:18 , 31 pp., arXiv: 1803.07628 (cited: 13) (cited: 14) |
80. |
Samuel Belliard, Nikita A. Slavnov, Benoit Vallet, “Modified Algebraic Bethe Ansatz: Twisted XXX Case”, SIGMA, 14 (2018), 54 , 18 pp., arXiv: 1804.00597 (cited: 8) (cited: 8) (cited: 7) |
81. |
S. Belliard, N. A. Slavnov, “A note on $\mathfrak{gl}_2$-invariant Bethe vectors”, JHEP, 2018 (2018), 31 , 14 pp., arXiv: 1802.07576 (cited: 5) (cited: 5) |
82. |
S. Belliard, N. A. Slavnov, B. Vallet, “Scalar product of twisted XXX modified Bethe vectors”, J. Stat. Mech., 2018:9 (2018), 93103 , 28 pp., arXiv: 1805.11323 (cited: 3) (cited: 2) |
83. |
N. A. Slavnov, “Determinant representations for scalar products in the algebraic Bethe ansatz”, Theoret. and Math. Phys., 197:3 (2018), 1771–1778 |
84. |
Irina Aref'eva, Igor Volovich, Notes on the SYK model in real time, 2018 , 18 pp., arXiv: 1801.08118 |
85. |
Irina Ya. Aref'eva, Anastasia A. Golubtsova and Giuseppe Policastro, Exact holographic RG flows and the $A_1\times A_1$ Toda chain, 2018 , 55 pp., arXiv: 1803.06764 |
86. |
D. S. Ageev, I. Ya. Aref'eva, “Holographic non-equilibrium heating”, JHEP, 2018:3 (2018), 103 , 19 pp., arXiv: 1704.07747 (cited: 8) (cited: 6) |
87. |
D. S. Ageev, I. Ya. Aref'eva, A. A. Golubtsova, E. Gourgoulhon, “Thermalization of holographic Wilson loops in spacetimes with spatial anisotropy”, Nuclear Phys. B, 931 (2018), 506–536 (cited: 4) (cited: 5) |
88. |
Irina Aref'eva, Kristina Rannu, “Holographic anisotropic background with confinement-deconfinement phase transition”, JHEP, 5 (2018), 206 , 56 pp., arXiv: 1802.05652 (cited: 24) (cited: 21) |
89. |
I. Ya. Aref'eva, I. V. Volovich, “Notes on the SYK model in real time”, Theoret. and Math. Phys., 197:2 (2018), 1650–1662 (cited: 10) (cited: 8) |
90. |
I. Ya. Aref'eva, I. V. Volovich, O. V. Inozemtsev, “Evolution of holographic entropy quantities for composite quantum systems”, Theoret. and Math. Phys., 197:3 (2018), 1838–1844 |
91. |
Dmitry S. Ageev, Irina Ya. Aref'eva, When things stop falling, chaos is suppressed, 2018 , 8 pp., arXiv: 1806.05574 |
92. |
I. Aref'eva, K. Rannu and P. Slepov, Orientation Dependence of Confinement-Deconfinement Phase Transition in Anisotropic Media, 2018 , 18 pp., arXiv: 1808.05596 |
93. |
Irina Aref'eva, Mikhail Khramtsov, Maria Tikhanovskaya, “On $1/N$ diagrammatics in the SYK model beyond the conformal limit”, 20th International Seminar on High Energy Physics QUARKS-2018 (Valday, Russia, 27 May - 02 June, 2018), EPJ Web of Conf., 191, 2018, 06008 , 8 pp. (cited: 1) (cited: 1) |
94. |
Irina Aref'eva, Mikhail Khramtsov, Maria Tikhanovskaya, Igor Volovich, “On replica-nondiagonal large $N$ saddles in the SYK model”, 20th International Seminar on High Energy Physics (QUARKS-2018) (Valday, Russia, 27 May - 02 June, 2018), EPJ Web of Conf., 191, 2018, 06007 , 8 pp. (cited: 3) (cited: 4) |
95. |
Irina Aref'eva, “Holography for Heavy-Ion Collisions at LHC and NICA. Results of the last two years”, 20th International Seminar on High Energy, EPJ Web of Conf., 191, 2018, 05010 , 8 pp. (cited: 7) (cited: 8) |
96. |
Dmitry Ageev, Irina Aref'eva, Andrey Bagrov, Mikhail I. Katsnelson, “Holographic local quench and effective complexity”, JHEP, 2018:8 (2018), 71 , 30 pp., arXiv: 1803.11162 (cited: 18) (cited: 20) |
97. |
Phys. Part. Nucl., 49:5 (2018), 963–965 |
98. |
D. V. Bykov, “The $1/N$-expansion for flag-manifold $\sigma$-models”, Theoret. and Math. Phys., 197:3 (2018), 1691–1700 (cited: 1) (cited: 2) |
99. |
Dmitri Bykov, “Ricci-flat metrics and Killing–Yano tensors”, QUARKS-2018, EPJ Web of Conf., 191, 2018, 06010 , 8 pp. |
100. |
I. Sechin, A. Zotov, “R-matrix-valued Lax pairs and long-range spin chains”, Phys. Lett. B, 781 (2018), 1–7 , arXiv: 1801.08908 (cited: 7) (cited: 7) |
101. |
A. Grekov, A. Zotov, “On $R$-matrix valued Lax pairs for Calogero–Moser models”, J. Phys. A, 51 (2018), 315202 , 26 pp., arXiv: 1801.00245 (cited: 5) (cited: 5) |
102. |
A. V. Zabrodin, A. V. Zotov, “Self–dual form of Ruijsenaars–Schneider models and ILW equation with discrete Laplacian”, Nuclear Phys. B, 927 (2018), 550–565 , arXiv: 1711.01036 (cited: 4) (cited: 4) |
103. |
A. V. Zotov, “Calogero–Moser model and $R$-matrix identities”, Theoret. and Math. Phys., 197:3 (2018), 1755–1770 (cited: 4) (cited: 4) |
104. |
S. Kharchev, A. Levin, M. Olshanetsky, A. Zotov, “Quasi-compact Higgs bundles and Calogero–Sutherland systems with two types of spins”, J. Math. Phys., 59:10 (2018), 103509 , 36 pp., arXiv: 1712.08851 (cited: 4) (cited: 6) |
|
2017 |
105. |
Jorgen Ellegaard Andersen, Gaetan Borot, Leonid O. Chekhov, Nicolas Orantin, The ABCD of topological recursion, 2017 , 75 pp., arXiv: 1703.03307 |
106. |
Leonid Chekhov, Marta Mazzocco, Vladimir Rubtsov, Algebras of quantum monodromy data and decorated character varieties, 2017 , 22 pp., arXiv: 1705.01447 |
107. |
L. O. Chekhov, M. Mazzocco, “On a Poisson homogeneous space of bilinear forms with a Poisson–Lie action”, Russian Math. Surveys, 72:6 (2017), 1109–1156 |
108. |
Leonid O. Chekhov, Marta Mazzocco, Vladimir N. Rubtsov, “Painlevé monodromy manifolds, decorated character varieties, and cluster algebras”, Int. Math. Res. Not. IMRN, 2017:24 (2017), 7639–7691 (cited: 16) (cited: 14) |
109. |
Andrei K. Pogrebkov, “Symmetries of the Hirota Difference Equation”, SIGMA, 13 (2017), 53 , 14 pp., arXiv: 1704.00043 (cited: 5) (cited: 5) (cited: 5) |
110. |
M. Boiti, F. Pempinelli, A. K. Pogrebkov, “KPII: Cauchy–Jost function, Darboux transformations and totally nonnegative matrices”, J. Phys. A, 50 (2017), 304001 , 22 pp., arXiv: 1611.04198 (cited: 2) (cited: 2) |
111. |
I. Arefeva, A. Slavnov, “Ludwig Faddeev 1934-2017”, Obituary, CERN Courier, 57:4 (2017), 55 |
112. |
A. A. Belavin, M. I. Vysotsky, S. S. Gershtein, V. I. Zakharov, B. L. Ioffe, D. I. Kazakov, V. T. Kim, V. A. Matveev, A. M. Polyakov, V. A. Rubakov, A. A. Slavnov, V. S. Fadin, “In memory of Lev Nikolaevich Lipatov”, Phys. Usp., 60:12 (2017), 1306–1307 |
113. |
A. A. Slavnov, “A possibility to describe models of massive non-Abelian gauge fields in the framework of a renormalizable theory”, Theoret. and Math. Phys., 193:3 (2017), 1826–1833 (cited: 2) (cited: 2) |
114. |
A. A. Slavnov, “60 years of nonabelian gauge fields”, Particle Physics at the Year of Light, 2017, 435–442 (cited: 1) |
115. |
V. P. Pavlov, The Moon turns out to be the perfect object to use thelinear elasticity theory, 2017 , Preprint submitted to Earth and Planetary Science Letters, arXiv: 1706.09296 |
116. |
A. A. Hutsalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Current presentation for the super-Yangian double $DY(\mathfrak{gl}(m|n))$ and Bethe vectors”, Russian Math. Surveys, 72:1 (2017), 33–99 (cited: 14) (cited: 13) |
117. |
A. A. Hutsalyuk, A. N. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry 2. Determinant representation”, J. Phys. A, 50:3 (2017), 34004 , 22 pp., arXiv: 1606.03573 (cited: 17) (cited: 15) |
118. |
Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Bethe vectors for models based on the super-Yangian $Y(gl(m|n))$”, J. Integrab. Syst., 2 (2017), 1–31 , arXiv: 1604.02311 |
119. |
J. Fuksa, N. A. Slavnov, “Form factors of local operators in supersymmetric quantum integrable models”, J. Stat. Mech., 2017, 43106 , 21 pp., arXiv: 1701.05866 (cited: 7) (cited: 6) |
120. |
N. A. Slavnov, “Algebraic Bethe ansatz”, Lekts. Kursy NOC, 27, Steklov Math. Institute of RAS, Moscow, 2017, 3–189 |
121. |
A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov, “Scalar products of Bethe vectors in the models with $\mathfrak{gl}(m|n)$ symmetry”, Nuclear Phys. B, 923 (2017), 277–311 , arXiv: 1704.08173 (cited: 11) (cited: 10) |
122. |
D. S. Ageev, I. Ya. Aref'eva, “Waking and scrambling in holographic heating up”, Theoret. and Math. Phys., 193:1 (2017), 1534–1546 (cited: 4) (cited: 3) |
123. |
I. Ya. Aref'eva, G. S. Djordjevic, A. Yu. Khrennikov, S. V. Kozyrev, Z. Rakic, I. V. Volovich, “p-Adic mathematical physics and B. Dragovich research”, P-Adic Numbers Ultrametric Anal. Appl., 9:1 (2017), 82–85 (cited: 1) (cited: 1) |
124. |
Irina Ya. Aref'eva, Mikhail A. Khramtsov, Maria D. Tikhanovskaya, “Thermalization after holographic bilocal quench”, JHEP, 9 (2017), 115 , 66 pp., arXiv: 1706.07390 (cited: 1) (cited: 19) (cited: 18) |
125. |
L. A. Takhtajan, A. Yu. Alekseev, I. Ya. Aref'eva, M. A. Semenov-Tian-Shansky, E. K. Sklyanin, F. A. Smirnov, S. L. Shatashvili, “Scientific heritage of L. D. Faddeev. Survey of papers”, Russian Math. Surveys, 72:6 (2017), 977–1081 (cited: 5) (cited: 3) |
126. |
I. Ya. Aref'eva, V. E. Zakharov, V. V. Kozlov, I. M. Krichever, V. P. Maslov, S. P. Novikov, A. M. Polyakov, N. Yu. Reshetikhin, M. A. Semenov-Tian-Shansky, E. K. Sklyanin, F. A. Smirnov, L. A. Takhtajan, S. L. Shatashvili, “Ludwig Dmitrievich Faddeev (obituary)”, Russian Math. Surveys, 72:6 (2017), 1157–1163 |
127. |
I. Ya. Aref'eva, I. V. Volovich, O. V. Inozemcev, “Holographic control of information and dynamical topology change for composite open quantum systems”, Theoret. and Math. Phys., 193:3 (2017), 1834–1843 (cited: 1) (cited: 1) |
128. |
Dmitry S. Ageev, Irina Ya. Aref'eva , Anastasia A. Golubtsova, “Holographic Wilson loops in spacetimes with spatial anisotropy”, PoS CORFU2016, Corfu Summer Institute 2016 “School and Workshops on Elementary Particle Physics and Gravity” (31 August – 23 September, 2016, Corfu, Greece), 2017, 086 https://pos.sissa.it/292/086/pdf |
129. |
Irina Aref'eva, “Holography for Heavy Ions Collisions at LHC and NICA”, 5th International Conference on New Frontiers in Physics (Crete, Greece, July 6–14, 2016), EPJ Web of Conf., 164, eds. L. Bravina, Y. Foka and S. Kabana (Eds.), 2017, 1014 , 20 pp. (cited: 13) (cited: 13) |
130. |
Dmitri Bykov, “Complex structure-induced deformations of $\sigma$-models”, JHEP, 2017, no. 3, 130 , 26 pp., arXiv: 1611.07116 (cited: 4) (cited: 6) |
131. |
D. V. Bykov, “A gauged linear formulation for flag-manifold $\sigma$-models”, Theoret. and Math. Phys., 193:3 (2017), 1737–1753 (cited: 3) (cited: 3) |
132. |
A. Zabrodin, A. Zotov, “KZ-Calogero correspondence revisited”, J. Phys. A, 50 (2017), 205202 , 12 pp., arXiv: 1701.06074 (cited: 5) (cited: 4) |
133. |
A. V. Zabrodin, A. V. Zotov, A. N. Liashyk, D. S. Rudneva, “Asymmetric six-vertex model and the classical Ruijsenaars–Schneider system of particles”, Theoret. and Math. Phys., 192:2 (2017), 1141–1153 , arXiv: 1611.02497 (cited: 2) (cited: 3) |
134. |
A. Zabrodin, A. Zotov, “QKZ–Ruijsenaars correspondence revisited”, Nuclear Phys. B, 922 (2017), 113–125 , arXiv: 1704.04527 (cited: 4) (cited: 3) |
135. |
JETP Letters, 106:3 (2017), 179–183 (cited: 2) (cited: 3) |
136. |
A. Zotov, “Relativistic elliptic matrix tops and finite Fourier transformations”, Modern Phys. Lett. A, 32:32 (2017), 1750169 , 22 pp., arXiv: 1706.05601 (cited: 2) (cited: 5) (cited: 5) |
137. |
M. G. Matushko, V. V. Sokolov, “Polynomial forms for quantum elliptic Calogero–Moser Hamiltonians”, Theoret. and Math. Phys., 191:1 (2017), 480–490 (cited: 1) |
|
2016 |
138. |
Leonid O. Chekhov, “The Harer–Zagier recursion for an irregular spectral curve”, J. Geom. Phys., 110 (2016), 30–43 , arXiv: 1512.09278 (cited: 4) (cited: 5) (cited: 5) |
139. |
A. K. Pogrebkov, “Commutator identities on associative algebras, the non-Abelian Hirota difference equation and its reductions”, Theoret. and Math. Phys., 187:3 (2016), 823–834 (cited: 5) (cited: 5) |
140. |
V. V. Belokurov, V. V. Voronov, D. I. Kazakov, V. A. Matveev, I. N. Meshkov, Yu. Ts. Oganessian, V. A. Rubakov, A. N. Skrinsky, A. A. Slavnov, G. V. Trubnikov, Yu. A. Trutnev, V. E. Fortov, “In memory of Dmitrii Vasil'evich Shirkov”, Phys. Usp., 59:4 (2016), 419–420 |
141. |
A. A. Slavnov, “Nonperturbative quantization of models of massive non-Abelian gauge fields with spontaneously broken symmetry”, Theoret. and Math. Phys., 189:2 (2016), 1645–1650 (cited: 3) (cited: 3) |
142. |
V. P. Pavlov, V. M. Sergeev, “Fluid dynamics and thermodynamics as a unified field theory”, Proc. Steklov Inst. Math., 294 (2016), 222–232 (cited: 2) (cited: 1) |
143. |
V. P. Pavlov, “Luna – idealnyi ob'ekt dlya primeneniya lineinoi teorii uprugosti”, Sbornik trudov IX Vserossiiskoi konferentsii “Mekhanika deformiruemogo tverdogo tela” (Voronezh, 12–15 sentyabrya 2016 g.), Izd-vo “Nauchno-issledovatelskie publikatsii”, Voronezh, 2016, 130–135 http://www.spsl.nsc.ru/FullText/konfe/MEKhANIKA.pdf |
144. |
Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models”, SIGMA, 12 (2016), 99 , 22 pp., arXiv: 1605.06419 (cited: 10) (cited: 10) (cited: 11) |
145. |
A. Hustalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models”, Nuclear Phys. B, 911 (2016), 902–927 , arXiv: 1607.04978 (cited: 12) (cited: 11) |
146. |
N. A. Slavnov, “Multiple commutation relations in the models with $\mathfrak gl(2|1)$ symmetry”, Theoret. and Math. Phys., 189:2 (2016), 1624–1644 (cited: 7) (cited: 6) |
147. |
A. Hustalyuk, A. Liashyk, S. Pakulyak, E. Ragoucy, N. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry. 1. Super-analog of Reshetikhin formula”, J. Phys. A, 49:45 (2016), 454005 , 28 pp., arXiv: 1605.09189 (cited: 11) (cited: 13) |
148. |
Irina Aref'eva, “Holographic description of QGP production in heavy ion collisions”, AIP Conf. Proc., 1701, 2016, 90001 , 5 pp. (cited: 3) (cited: 1) |
149. |
Irina Aref'eva, Igor Volovich, Holographic photosynthesis, 2016 , 36 pp., arXiv: 1603.09107 |
150. |
Irina Ya. Aref'eva, Mikhail A. Khramtsov, “AdS/CFT prescription for angle-deficit space and winding geodesics”, JHEP, 2016, no. 4, 121 , 21 pp., arXiv: 1601.02008 (cited: 2) (cited: 13) (cited: 11) |
151. |
I. Ya. Aref'eva, M. A. Khramtsov, M. D. Tikhanovskaya, Holographic Dual to Conical Defects III: Improved Image Method, 2016 , 18 pp., arXiv: 1604.08905 [hep-th] |
152. |
D. S. Ageev, I. Y. Aref'eva, A. A. Golubtsova, E. Gourgoulhon, Holographic Wilson loops in Lifshitz-like backgrounds, 2016 , 39 pp., arXiv: 1606.03995 |
153. |
D. S. Ageev, I. Ya. Aref'eva, M. D. Tikhanovskaya, “$(1+1)$-Correlators and moving massive defects”, Theoret. and Math. Phys., 188:1 (2016), 1038–1068 (cited: 10) (cited: 6) (cited: 6) |
154. |
D. S. Ageev, I. Ya. Aref'eva, “Holographic instant conformal symmetry breaking by colliding conical defects”, Theoret. and Math. Phys., 189:3 (2016), 1742–1754 (cited: 12) (cited: 6) |
155. |
Irina Aref'eva, Andrey Bagrov, Petter Saterskog, Koenraad Schalm, “Holographic dual of a time machine”, Phys. Rev. D, 94:4 (2016), 044059 (cited: 9) (cited: 4) |
156. |
Irina Aref'eva, “Multiplicity and theremalization time in heavy-ions collisions”, 19th International Seminar on High Energy Physics (QUARKS-2016), Sankt-Peterburg, 29 maya–4 iyunya 2016 g., EPJ Web of Conf., 125, 2016, 1007 , 12 pp. (cited: 12) (cited: 12) |
157. |
I. Ya. Aref'eva, M. A. Khramtsov, M. D. Tikhanovskaya, “Improved image method for a holographic description of conical defects”, Theoret. and Math. Phys., 189:2 (2016), 1660–1672 (cited: 6) (cited: 5) |
158. |
Irina Ya. Aref'eva, Anastasia A. Golubtsova, E. Gourgoulhon, “Analytic black branes in Lifshitz-like backgrounds and thermalization”, JHEP, 2016:9 (2016), 142 , 37 pp., arXiv: 1601.06046 (cited: 15) (cited: 13) |
159. |
Dmitri Bykov, “Classical solutions of a flag manifold $\sigma$-model”, Nuclear Phys. B, 902 (2016), 292–301 (cited: 12) (cited: 12) |
160. |
Dmitri Bykov, “Complex structures and zero-curvature equations for $\sigma$-models”, Phys. Lett. B, 760 (2016), 341–344 (cited: 12) (cited: 12) |
161. |
D. V. Bykov, “Cyclic gradings of Lie algebras and Lax pairs for $\sigma$-models”, Theoret. and Math. Phys., 189:3 (2016), 1734–1741 (cited: 5) (cited: 5) |
162. |
Dmitri Bykov, “Sigma-models with complex homogeneous target spaces”, 19th International Seminar on High Energy Physics (QUARKS-2016), Sankt-Peterburg, 29 maya–4 iyunya 2016 g., EPJ Web of Conf., 125, 2016, 5002 , 7 pp. |
163. |
A. Levin, M. Olshanetsky, A. Zotov, “Yang–Baxter equations with two Planck constants”, J. Phys. A: Math. Theor., 49:1 (2016), 14003 , 19 pp., Exactly Solved Models and Beyond: a special issue in honour of R. J. Baxter's 75th birthday, arXiv: 1507.02617 (cited: 8) (cited: 8) |
164. |
M. Beketov, A. Liashyk, A. Zabrodin, A. Zotov, “Trigonometric version of quantum–classical duality in integrable systems”, Nuclear Phys. B, 903 (2016), 150–163 , arXiv: 1510.07509 (cited: 13) (cited: 12) |
165. |
Ivan Sechin, Andrei Zotov, “Associative Yang-Baxter equation for quantum (semi-)dynamical R-matrices”, J. Math. Phys., 57:5 (2016), 53505 , 14 pp., arXiv: 1511.08761 (cited: 2) (cited: 2) |
166. |
A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero–Moser systems, and KZB equations”, Theoret. and Math. Phys., 188:2 (2016), 1121–1154 , arXiv: 1507.04265 |
167. |
Andrey Levin, Mikhail Olshanetsky, Andrei Zotov, “Noncommutative extensions of elliptic integrable Euler–Arnold tops and Painlevé VI equation”, J. Phys. A, 49:39 (2016), 395202 , 26 pp., arXiv: 1603.06101 (cited: 7) (cited: 8) |
168. |
A. V. Zotov, “Higher-order analogues of the unitarity condition for quantum $R$-matrices”, Theoret. and Math. Phys., 189:2 (2016), 1554–1562 (cited: 6) (cited: 5) |
|
2015 |
169. |
Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “${\rm GL}(3)$-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators”, SIGMA, 11 (2015), 064 , 18 pp., arXiv: 1502.01966 (cited: 19) (cited: 20) (cited: 2) (cited: 19) |
170. |
J. E. Andersen, L. O. Chekhov, P. Norbury, R. C. Penner, “Models of discretized moduli spaces, cohomological field theories, and Gaussian means”, J. Geom. Phys., 98 (2015), 312–339 (cited: 8) (cited: 1) (cited: 5) |
171. |
J. E. Andersen, L. O. Chekhov, P. Norbury, R. C. Penner, “Topological recursion for Gaussian means and cohomological field theories”, Theoret. and Math. Phys., 185:3 (2015), 1685–1717 (cited: 2) (cited: 2) |
172. |
M. Boiti, F. Pempinelli, A. K. Pogrebkov, “Cauchy–Jost function and hierarchy of integrable equations”, Theoret. and Math. Phys., 185:2 (2015), 1599–1613 (cited: 3) (cited: 3) |
173. |
A. A. Slavnov, “Soliton solutions of classical equations of motions in the modified formulation of the Yang–Mills theory”, Theoret. and Math. Phys., 184:3 (2015), 1342–1349 (cited: 1) |
174. |
A. A. Slavnov, “New approach to the quantization of the Yang–Mills field”, Theoret. and Math. Phys., 183:2 (2015), 585–596 (cited: 6) (cited: 1) (cited: 1) (cited: 7) |
175. |
A. A. Slavnov, “Quantization of Non-Abelian Gauge Fields”, Proc. Steklov Inst. Math., 289 (2015), 286–290 (cited: 1) (cited: 1) |
176. |
S. S. Gershtein, S. P. Denisov, A. M. Zaitsev, S. V. Ivanov, V. A. Matveev, M. A. Mestvirishvili, V. A. Petrov, V. A. Rubakov, V. A. Sadovnichy, A. A. Slavnov, A. N. Skrinsky, Yu. A. Trutnev, N. E. Tyurin, “In memory of Anatoly Alekseevich Logunov”, Phys. Usp., 58:9 (2015), 927–928 (cited: 1) |
177. |
V. P. Pavlov, “Perturbation Theory for the Stress Tensor in the Moon's Body with Tidal Effects Taken into Account”, Proc. Steklov Inst. Math., 289 (2015), 183–193 |
178. |
V. V. Kozlov, V. P. Pavlov, A. G. Sergeev, “Vladimir Andreevich Steklov (1863–1926)”, Proc. Steklov Inst. Math., 289 (2015), 1–9 |
179. |
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Zero modes method and form factors in quantum integrable models”, Nuclear Phys. B, 893 (2015), 459–481 , arXiv: 1412.6037 (cited: 7) (cited: 21) (cited: 8) (cited: 21) |
180. |
N. A. Slavnov, “Scalar products in $GL(3)$-based models with trigonometric $R$-matrix. Determinant representation”, J. Stat. Mech. Theory Exp., 2015, no. 03, P03019 , 25 pp., arXiv: 1501.06253 (cited: 3) (cited: 14) (cited: 14) |
181. |
N. A. Slavnov, “One-dimensional two-component Bose gas and the algebraic Bethe ansatz”, Theoret. and Math. Phys., 183:3 (2015), 800–821 (cited: 6) (cited: 5) |
182. |
Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “${\rm GL}(3)$-Based Quantum Integrable Composite Models. I. Bethe Vectors”, SIGMA, 11 (2015), 063 , 20 pp., arXiv: 1501.07566 (cited: 17) (cited: 17) (cited: 4) (cited: 16) |
183. |
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors of local operators in a one-dimensional two-component Bose gas”, J. Phys. A, 48:43 (2015), 435001 , 21 pp., arXiv: 1503.00546 (cited: 1) (cited: 16) (cited: 4) (cited: 17) |
184. |
I. Ya. Aref'eva, A. A. Bagrov, “Holographic dual of a conical defect”, Theoret. and Math. Phys., 182:1 (2015), 1–22 (cited: 8) (cited: 1) (cited: 1) (cited: 2) |
185. |
D. S. Ageev, I. Ya. Aref'eva, “Holographic thermalization in a quark confining background”, J. Exp. Theor. Phys., 120:3 (2015), 436–443 (cited: 10) (cited: 1) (cited: 1) (cited: 7) |
186. |
Irina Ya. Aref'eva, QGP time formation in holographic shock waves model of heavy ion collisions, 2015 , 25 pp., arXiv: 1503.02185 |
187. |
I. Ya. Aref'eva, A. A. Golubtsova, “Shock waves in Lifshitz-like spacetimes”, JHEP, 04 (2015), 11 , 33 pp., arXiv: 1410.4595 (cited: 4) (cited: 13) (cited: 8) |
188. |
I. Ya. Aref'eva, “On finite-temperature string field theory and $p$-adic string”, P-Adic Numbers, Ultrametric Analysis, and Applications, 7:2 (2015), 111–120 (cited: 1) (cited: 2) |
189. |
I. Ya. Aref'eva, I. V. Volovich, S. V. Kozyrev, “Stochastic limit method and interference in quantum many-particle systems”, Theoret. and Math. Phys., 183:3 (2015), 782–799 (cited: 13) (cited: 1) (cited: 1) (cited: 11) |
190. |
I. Ya. Aref'eva, “Formation time of quark–gluon plasma in heavy-ion collisions in the holographic shock wave model”, Theoret. and Math. Phys., 184:3 (2015), 1239–1255 (cited: 17) (cited: 1) (cited: 1) (cited: 12) |
191. |
L. Accardi, I. Ya. Aref'eva, I. V. Volovich, “Fermionic Meixner classes, Lie algebras and quadratic hamiltonians”, Indian J. Pure Appl. Math., 46:4, Dedicated to Prof. Kalyan B. Sinha on occasion of his 70th birthday (2015), 517–538 , arXiv: 1411.4607 (cited: 1) (cited: 1) |
192. |
Irina Arefeva, Andrey Bagrov, Petter Säterskog and Koenraad Schalm, Holographic dual of a time machine, 2015 , 37 pp., arXiv: 1508.04440 |
193. |
D. S. Ageev, I. Ya. Aref'eva, M. D. Tikhanovskaya, Holographic Dual to Conical Defects: I. Moving Massive Particle, 2015 , 43 pp., arXiv: 1512.03362 |
194. |
D. S. Ageev, I. Ya. Aref'eva, Holographic Dual to Conical Defects: II. Colliding Ultrarelativistic Particles, 2015 , 17 pp., arXiv: 1512.03363 |
195. |
D. Bykov, “Integrable properties of $\sigma$-models with non-symmetric target spaces”, Nuclear Phys. B, 894 (2015), 254–267 , arXiv: 1412.3746 (cited: 1) (cited: 14) (cited: 2) (cited: 12) |
196. |
D. V. Bykov, “The differential geometry of blow-ups”, Theoret. and Math. Phys., 185:2 (2015), 1636–1648 (cited: 1) (cited: 1) |
197. |
G. Aminov, H. W. Braden, A. Mironov, A. Morozov, A. Zotov, “Seiberg-Witten curves and double-elliptic integrable systems”, J. High Energy Phys., 2015, no. 1, 033 , 15 pp., arXiv: 1410.0698 (cited: 4) (cited: 11) (cited: 4) (cited: 9) |
198. |
G. Aminov, A. Levin, M. Olshanetsky, A. Zotov, “Classical integrable systems and Knizhnik–Zamolodchikov–Bernard equations”, JETP Letters, 101:9 (2015), 648–655 |
199. |
A. Zabrodin, A. Zotov, “Classical-quantum correspondence and functional relations for Painlevé equations”, Constr. Approx., 41:3 (2015), 385–423 , arXiv: 1212.5813 (cited: 2) (cited: 7) (cited: 3) |
200. |
Zengo Tsuboi, Anton Zabrodin, Andrei Zotov, “Supersymmetric quantum spin chains and classical integrable systems”, J. High Energy Phys., 2015, no. 5, 086 , 43 pp., arXiv: 1412.2586 (cited: 2) (cited: 14) (cited: 1) (cited: 12) |
201. |
A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Quantum Baxter–Belavin $R$-matrices and multidimensional Lax pairs for Painlevé VI”, Theoret. and Math. Phys., 184:1 (2015), 924–939 , arXiv: 1501.07351 (cited: 13) (cited: 3) (cited: 3) (cited: 13) |
|
|