Home page
Home page
Home page
Russian page
English page
Math-Net.Ru | MMS | Web of Science | Scopus | MathSciNet | zbMATH | Web-mail 

   
 About the Institute
 Staff publications
 Administration
 Academic Council
 Dissertation Councils
 Departments
Staff 
 Chair at MIPT
 Seminars
 Conferences
 Events
 Journals and Books
 In memoriam
 Photogallery
 Charter


    Address
8 Gubkina St. Moscow,
119991, Russia
Tel.: +7(495) 984 81 41
Fax: +7(495) 984 81 39
Web site: www.mi-ras.ru
E-mail: steklov@mi-ras.ru

View Map
Directions

   

Department of Mathematical Physics

| Seminars | History of the Department | Research Directions | Main Results | Books written by the Department's members | Publications |
Department of Mathematical Physics
Staff
Stepanenko Daniil Olegovich
Research Assistant
Volovich Igor Vasil'evich

Doctor Phys.-Math. Sci., Corresponding Member of RAS, Head of Department, Chief Scientific Researcher
office: 435; tel.: +7 (495) 984 81 41 * 37 81; e-mail: volovich@mi-ras.ru
Principal fields of research: Mathematical physics. p-Adic analysis. Including mathematical problems in quantum field theory. String theory. Gravity. Quantum information. Quantum optics.
Volovich Igor Vasil'evich
Gushchin Anatolii Konstantinovich

Doctor Phys.-Math. Sci., Professor, Leading Scientific Researcher
office: 434; tel.: +7 (495) 984 81 41 * 39 34; e-mail: akg@mi-ras.ru
Principal fields of research: Boundary-value problems for differential equations
Gushchin Anatolii Konstantinovich
Drozhzhinov Yurii Nikolaevich

Doctor Phys.-Math. Sci., Professor, Leading Scientific Researcher
office: 433; tel.: +7 (495) 984 81 41 * 37 80; e-mail: drozzin@mi-ras.ru
Principal fields of research: Generalized functions. Integral transforms in distributions spaces. Fourier analysis. Laplace transform. Operational calculi. Differentional equations.
Drozhzhinov Yurii Nikolaevich
Zharinov Viktor Viktorovich

Doctor Phys.-Math. Sci., Professor, Leading Scientific Researcher
office: 433; tel.: +7 (495) 984 81 41 * 37 80; e-mail: zharinov@mi-ras.ru
Principal fields of research: Complex analysis. Hyperfunctions. Integral representations. Algebraic and geometric methods in partial differential equations. Mathematical methods in quantum theory.
Zharinov Viktor Viktorovich
Katanaev Mikhail Orionovich

Doctor Phys.-Math. Sci., Leading Scientific Researcher
office: 428; tel.: +7 (495) 984 81 41 * 36 62; e-mail: katanaev@mi-ras.ru
Principal fields of research: Ddifferential geometry. Gravity models. Geometric theory of defects.
Katanaev Mikhail Orionovich
Kozyrev Sergei Vladimirovich

Doctor Phys.-Math. Sci., Leading Scientific Researcher
office: 428; tel.: +7 (495) 984 81 41 * 39 12; e-mail: kozyrev@mi-ras.ru
Principal fields of research: Ultrametric and p-adic analysis and applications in physics and biology, quantum probability and applications in physics, stochastic limit of quantum theory.
Kozyrev Sergei Vladimirovich
Marchuk Nikolai Gur'evich

Doctor Phys.-Math. Sci., Leading Scientific Researcher
office: 434; tel.: +7 (495) 984 81 41 * 39 12; e-mail: nmarchuk@mi-ras.ru
Personal page: https://homepage.mi-ras.ru/~nmarchuk
Principal fields of research: Relativistic equations of quandum physics. Dirac equation. Yang–Mills equation. Einstein equation. Clifford algebras and differential forms.
Marchuk Nikolai Gur'evich
Trushechkin Anton Sergeevich

Doctor Phys.-Math. Sci., Leading Scientific Researcher
office: 429; tel.: +7 (495) 984 81 41 * 36 62; e-mail: trushechkin@mi-ras.ru
Principal fields of research: Foundations of statistical mechanics and kinetics, Loschmidt's paradox, quantum dynamics in bounded domains, quantum cryptography.
Trushechkin Anton Sergeevich

Dezin Aleksei Alekseevich (23.04.1923 – 4.03.2008)

Doctor Phys.-Math. Sci.

Principal fields of research: Partial differential equations. Functional analysis. Discrete models.
Mikhailov Valentin Petrovich (15.12.1930 – 07.07.2014)

Doctor Phys.-Math. Sci., Professor, Leading Scientific Researcher

Principal fields of research: Boundary-value problems for partial differential equations. Stabilization of solutions for non-stationary problems and the behaviour of solutions near the boundary.
Mikhailov Valentin Petrovich  (15.12.1930 – 07.07.2014)
Vladimirov Vasilii Sergeevich (9.01.1923 – 3.11.2012)

Doctor Phys.-Math. Sci., Academician of RAS

Principal fields of research: Equations and models of mathematical physics. Distributions. Functions of several complex variables. Many-dimentional tauberian theory. $p$-Adic analysis. Number theory. Numerical methods. Quantum field theory.
Vladimirov Vasilii Sergeevich  (9.01.1923 – 3.11.2012)
Zavialov Boris Ivanovich (18.12.1946 – 31.07.2012)

Doctor Phys.-Math. Sci., Professor

Principal fields of research: Generalized functions. Integral transforms. Differential equations. Tauberian theorems. Complex analysis.
Zavialov Boris Ivanovich (18.12.1946 – 31.07.2012)
Top
Seminars
Seminar of the Department of Mathematical Physics, Steklov Mathematical Institute of RAS
Seminar organizer: I. V. Volovich; Seminar Secretary: S. V. Kozyrev
Steklov Mathematical Institute of RAS, Room 430 (8 Gubkina)
Complex analysis and mathematical physics
Seminar organizers: A. G. Sergeev; A. V. Domrin
Steklov Mathematical Institute, Room 430 (8 Gubkina)
Seminar organizer: A. K. Gushchin; Seminar Secretary: V. V. Zharinov
Mathematical problems of quantum theory of nanosystems and photosynthesis
Top
History of the Department

The Department of Mathematical Physics was founded in 1969 by Academician of the USSR Academy of Sciences Prof. V.S.Vladimirov. The first research staff of the Department included several members from the Department of Theoretical Physics (S.S.Khoruzhii and B.M.Stepanov) and from the Department of Differential Equations (V.P.Mikhailov, A.A.Dezin, V.N.Maslennikova, V.S.Vinogradov, and PhD student A.K.Gushchin) of the Steklov Mathematical Institute. In 1970 the Laboratory of Partial Differential Equations was founded in the Department under the direction of V.P.Mikhailov.

Now the research staff of the Department includes 10 permanent researchers: Corresponding Member of the Russian Academy of Sciences Prof. I. V. Volovich (Head of the Department), Professors Yu. N. Drozhzhinov, A. K. Gushchin, M. O. Katanaev, S. V. Kozyrev, N. G. Marchyuk, A. N. Pechen, A. G. Sergeev, V. V. Zharinov, and Dr. A. S. Trushechkin. PhD student: N. B. Il'in.

Top
Research Directions

The main current research directions at the Department are the following:

  • P-adic mathematical physics (V. S. Vladimirov, I. V. Volovich, S. V. Kozyrev, E. I. Zelenov),
  • Quantum information and theory of open quantum systems (I. V. Volovich, S. V. Kozyrev, A. N. Pechen, A. S. Trushechkin),
  • Boundary value problems for equations of mathematical physics, including non-local equations (V. S. Vladimirov, A. K. Gushchin, V. P. Mikhailov),
  • Multidimensional complex analysis, multidimensional and one-dimensional Tauberian theory for distributions (Yu. N. Drozhzhinov, B. I. Zavialov),
  • Applications of the multidimensional complex analysis to quantum field theory and gauge field theory (A. G. Sergeev, R. V. Palvelev),
  • Algebro-geometric approach to differential equations (V. V. Zharinov),
  • Gravity models and the geometric theory of defects (M. O. Katanaev),
  • Mathematical models in biology (I. V. Volovich, S. V. Kozyrev),
  • Equations of relativistic field theory, Dirac equation, Clifford algebras (N. G. Marchyuk),
  • Kinetic theory and non-equilibrium processes, Loschmidt's paradox, quantum mechanics in bounded domains, mathematical theory of nanosystems (I. V. Volovich, S. V. Kozyrev, A. N. Pechen, A. S. Trushechkin),
  • Quantum control (A. N. Pechen).

Top
Main Results

The most fundamental results obtained by the Department's members include:

  • Proof and application in the axiomatic field theory of the Bogolyubov-Vladimirov 'finite covariance' theorem (N. N. Bogolyubov, V. S. Vladimirov);
  • Proof of the theorem on the C-convex hull (V. S. Vladimirov);
  • Development of p-adic mathematical physics, including p-adic quantum mechanics and p-adic string theory (V. S. Vladimirov, I. V. Volovich, S. V. Kozyrev, E. I. Zelenov);
  • Derivation of necessary and sufficient conditions for automodel asymptotic in quantum field theory (N. N. Bogolyubov, V. S. Vladimirov);
  • Development of Tauberian theory for distributions of many variables (V. S. Vladimirov, Yu. N. Drozhzhinov, B. I. Zavialov);
  • Development of the geometric theory of defects in solids (I. V. Volovich, M. O. Katanaev);
  • Construction of the master field describing the limit of the large gauge group in gauge theory (I. V. Volovich);
  • Construction of new solutions of non-linear partial differential equations of supergravity. Estimation of the probability of the creation of black holes and wormholes in the high energy scattering of particles (I. V. Volovich);
  • Derivation of a necessary and sufficient condition for the existence of a mean square limit at the boundary of solutions of linear second-order ellyptic differential equations (V. P. Mikhailov);
  • Proof of the theorems on the stabilization and quasistabilization for long times of the solutions of boundary value problems for linear parabolic and hyperbolic second-order differential equations (A. K. Gushchin, V. P. Mikhailov);
  • Proof of a compact version of the extended future tube conjecture (A. G. Sergeev, jointly with German mathematician P. Heinzner). Later a student of A. G. Sergeev, Chinese mathematician Zhou Xiangyu proved this conjecture in the general setting;
  • Twistor quantization of loop spaces of compact Lie groups (A. G. Sergeev, some results were obtained jointly with A. Popov and Bulgarian mathematician J. Davidov) and quantization of the universal Teichmueller space (A. G. Sergeev);
  • Mathematical description of the adiabatic limit in the Ginzburg-Landau and Seiberg-Witten equations (A. G. Sergeev);
  • Unification and extension in terms of a special functional space of the fundamental properties (such as belonging to a corresponding local Sobolev space and Holder continuity) of generalized solutions of linear second-order elliptic equations with measurable and bounded coefficients. Derivation of global estimates for the solution of the Dirichlet problem with a quadratically integrable boundary function which describe its behavior near the boundary (A. K. Gushchin);
  • Classification of global solutions of equations for two-dimensional gravity (M. O. Katanaev);
  • Construction of a deductive scheme of quantum mechanics on a line (A. A. Dezin);
  • Development of the theory of p-adic wavelets and applications of p-adic analysis in the theory of spin glasses and other complex systems (S. V. Kozyrev);
  • Generalization of the Dirac equation possessing an additional symmetry with respect to the pseudo-unitary, symplectic, or spinor group (N. G. Marchyuk);
  • Derivation of equations for higher order corrections to the stochastic weak coupling limit of open quantum systems (I. V. Volovich and A. N. Pechen);
  • Development of a quantum white noise technique for the analysis of the low density limit for open quantum systems (A. N. Pechen, in part jointly with L. Accardi and I. V. Volovich);
  • Proof of the existence of second order traps for a wide class of quantum control systems (A. N. Pechen and D. J. Tannor).

Top
Books written by the Department's members

V. S. Vladimirov
Mathematical Problems of the Uniform-Speed Theory of Transport (in Russian).
Moscow, Izdat. Akad. Nauk SSSR, 1961, 158 pp. (Trudy Mat. Inst. Steklov., Vol. 61)
V. S. Vladimirov
Methods in the Theory of Functions of Several Complex Variables (in Russian).
Moscow, Nauka, 1964, 411 pp.
V. S. Vladimirov
Equations of Mathematical Physics (in Russian).
Moscow, Nauka, 1967, 436 pp.
Ibid., 2nd ed., Recasted and revised, Moscow, Nauka, 1971, 512 pp.
Ibid., 3rd ed., Moscow, Nauka, 1976, 527 pp.
Ibid., 4th ed., Edited and extended, Moscow, Nauka, 1981, 512 pp.
Ibid., 5th ed., Extended, Moscow, Nauka, 1988, 512 pp.
V. S. Vladimirov
Generalized Functions in Mathematical Physics (in Russian).
Moscow, Nauka, 1976, 280 pp. (in series Current Problems in Physics and Technology)
Ibid., 2nd ed., Extended and revised, Moscow, Nauka, 1979, 318 pp.
V. S. Vladimirov
Methods of the Theory of Generalized Functions (in English).
London, Taylor & Francis, 2002, 311 pp. ISBN 0415273560.
V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov
P-adic Analysis and Mathematical Physics (in Russian).
Moscow, Nauka, Fiz. Mat. Lit., 1994, 352 pp.
V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov
P-adic Analysis and Mathematical Physics (in English).
World Scientific Pub Co Inc, 1995, 456 pp. ISBN 9810208804.
V. S. Vladimirov, Yu. N. Drozhzhinov, and B. I. Zav'yalov
Multidimensional Tauberian Theorems for Generalized Functions (in Russian).
Moscow, Nauka, 1986, 304 pp.
V. S. Vladimirov, Yu. N. Drozhzhinov, and B. I. Zav'yalov
Tauberian Theorems for Generalized Functions (in English).
Springer, 1988, 308 pp. ISBN 9027723834.
V. S. Vladimirov and V. V. Zharinov
Equations of Mathematical Physics. Textbook (in Russian).
Moscow, Fiz. Mat. Lit., 2000, 399 pp.
V. S. Vladimirov, V. P. Mikhailov, et al.
Collected Problems on Equations of Mathematical Physics. Textbook (in Russian).
Moscow, Nauka, 1974, 272 pp.
Ibid., 2nd ed., Extended and revised, Moscow, Nauka, 1982, 256 pp.
Ibid., 3rd ed., Revised, Moscow, Fiz. Mat. Lit., 2001, 288 pp.
V. S. Vladimirov (Editor)
A collection of Problems on the Equations of Mathematical Physics (in English).
Springer, 1986, 288 pp. ISBN 3540166475.
L. Accardi, Y. G. Lu, I. V. Volovich
Quantum Theory and Its Stochastic Limit (in English).
Berlin, Springer-Verlag, 2002.
M. Ohya, I. V. Volovich
Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems (in English).
Springer, 2011.
A. A. Dezin
Invariant Differential Operators and Boundary Value Problems (in Russian).
Moscow, Izdat. Akad. Nauk SSSR, 1962, 88 pp. (Trudy Mat. Inst. Steklov, vol. 68)
A. A. Dezin
General Questions of the Theory of Boundary Value Problems (in Russian).
Moscow, Nauka, 1980, 207 pp.
A. A. Dezin
Multidimensional analysis and discrete models (in Russian).
Moscow, Nauka, 1990, 238 pp.
A. A. Dezin
Differential Operator Equations: A Method of Model Operators in the Theory of Boundary Value Problems (in Russian).
Moscow, Nauka, 2000, 175 pp. (Trudy Mat. Inst. Steklov., Vol. 229).
V. V. Zharinov
Distributive Lattices and their Applications in Complex Analysis (in Russian).
Moscow, Nauka, 1983, 80 pp. (Trudy Mat. Inst. Steklov., 162)
V. V. Zharinov
Lecture Notes on Geometrical Aspects of Partial Differential Equations (in English).
Singapore, World Scientific, 1992. 360 pp. (Ser. on Soviet and East-European Mathematics; Vol. 9)
N. G. Marchuk
Fields Theory Equations and Clifford Algebras (in Russian).
RHD, Moscow-Izhevsk, 302 pages, 2009.
V. P. Mikhailov
Partial Differential Equations. Textbook (in Russian).
Moscow, Nauka, 1976, 391 pp.
Ibid., 2nd ed., Recasted and revised, Moscow, Nauka, 1983, 424 pp.
A. G. Sergeev
Kahler Geometry of Loop Spaces.
Moscow, MCCME, 2001, 128 pp. (Ser. Modern Mathematical Physics, Problems and Methods, Vol. 4)
A. G. Sergeev
Kahler Geometry of Loop Spaces (Nagoya Math. Lectures, vol. 7) (in English).
Nagoya, Nagoya Univ., 2008. 226  pp.
A. G. Sergeev
Kahler Geometry of Loop Spaces (MSJ Memoirs, 23) (in English).
Tokyo, Mathematical Society of Japan, 2010. 212 pp. ISBN: 978-4-931469-60-0.
A. G. Sergeev
Vortices and Seiberg–Witten equations (Nagoya Math. Lect., vol. 5) (in English).
Nagoya, Nagoya Univ., 2002. 87 pp.
A. V. Domrin, A. G. Sergeev
Lectures on Complex Analysis. Part I.
Steklov Mathematical Institute, Moscow, 2004. ISBN: 5-98419-007-9, http://www.mi.ras.ru/books/pdf/ser1.pdf
A. V. Domrin, A. G. Sergeev
Lectures on Complex Analysis. Part II.
Steklov Mathematical Institute, Moscow, 2004. ISBN: 5-98419-008-7, http://www.mi.ras.ru/books/pdf/ser2.pdf
S. S. Khoruzhii
Introduction to Algebraic Quantum Field Theory.
Moscow, Nauka, 1986, 304 pp.
S. V. Kozyrev
Methods and applications of ultrametric and p-adic analysis: from wavelet theory to biophysics.
Modern Problems of Mathematics, 12, Steklov Math. Inst., Russian Academy of Sciences, Moscow, 2008, 170 pp.

List of publications
Home page

© Steklov Mathematical Institute of RAS, 2004–2021