Home page
Home page
Home page
Russian page
English page
Math-Net.Ru | MMS | Web of Science | Scopus | MathSciNet | zbMATH | Web-mail 

 About the Institute
 Staff publications
 Academic Council
 Dissertation Councils
 Journals and Books
 In memoriam

8 Gubkina St. Moscow,
119991, Russia
Tel.: +7(495) 984 81 41
Fax: +7(495) 984 81 39
Web site: www.mi-ras.ru
E-mail: steklov@mi.ras.ru

View Map

Popov Vladimir Leonidovich
(full list of publications)
| by years | scientific publications | by types |

1. Vladimir L. Popov, “Modality of representations, and packets for $\theta$-groups”, Lie Groups, Geometry, and Representation Theory, 1st ed., Progress in Mathematics, eds. Victor G. Kac, Vladimir L. Popov, Birkhäuser, Boston, 2018 (to appear) 1707.07720
2. Vladimir L. Popov, “The Jordan property for Lie groups and automorphism groups of complex spaces”, Mathematical Notes, 103:5 (2018), 811–819 https://www.math.uni-bielefeld.de/LAG/man/593.pdf, arXiv: 1804.00323  crossref
3. V. L. Popov, Compressible finite groups of birational automorphisms, Dokl. Math., Moscow, 2018 (to appear) , 5 pp.

4. Vladimir L. Popov, “Do we create mathematics or do we gradually discover theories which exist somewhere independently of us?”, Eur. Math. Soc. Newsl., 107 (2017), 37  mathnet
5. V. L. Popov, “Borel subgroups of Cremona groups”, Mathematical Notes, 102:1 (2017), 60-67 link.springer.com/article/10.1134/S0001434617070070  mathnet  crossref  crossref  mathscinet  isi  elib  scopus
6. Vladimir L. Popov, Algebraic groups whose orbit closures contain only finitely many orbits, 2017 , 12 pp., arXiv: 1707.06914v1
7. Vladimir L. Popov, “Bass' triangulability problem”, Algebraic varieties and automorphism groups, Adv. Stud. Pure Math., 75, Math. Soc. Japan, Kinokuniya, Tokyo, 2017, 425–441 bookstore.ams.org/aspm-75/, arXiv: 1504.03867  mathnet
8. Vladimir L. Popov, “Discrete groups generated by complex reflections”, VI-th conference on algebraic geometry and complex analysis for young mathematicians of Russia (Northern (Arctic) Federal University named after M. V. Lomonosov, Koryazhma, Arkhangelsk region, Russia, August 25–30, 2017), Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, 2017, 13–14 www.mathnet.ru/php/conference.phtml?confid=1006&option_lang=eng
9. V. L. Popov, “On modality of representations”, Dokl. Math., 96:1 (2017), 312–314  mathnet  crossref  isi  elib  scopus

10. Vladimir L. Popov, “Birational splitting and algebraic group actions”, Eur. J. Math., 2:1 (2016), 283–290 , Published online: 16 May 2015 https://www.math.uni-bielefeld.de/LAG/man/552.pdf, arXiv: 1502.02167  mathnet  crossref  mathscinet  zmath  isi (cited: 2)  elib  scopus (cited: 1)
11. V. L. Popov, G. V. Sukhotskii, Analiticheskaya geometriya. Uchebnik i praktikum, Bakalavr. Akademicheskii kurs, 2-e izd., per. i dop., Yurait, Moskva, 2016 , 232 pp. http://urait.ru/catalog/388730
12. V. L. Popov, “Algebras of General Type: Rational Parametrization and Normal Forms”, Proc. Steklov Inst. Math., 292:1 (2016), 202–215  mathnet  crossref  crossref  mathscinet  isi (cited: 1)  elib  elib  scopus
13. V. L. Popov, “Subgroups of the Cremona groups: Bass' problem”, Dokl. Math., 93:3 (2016), 307–309  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
14. V. L. Popov, “Rationality of (co)adjoint orbits”, International conference on algebraic geometry, complex analysis and computer algebra (Northern (Arctic) Federal University named after M. V. Lomonosov, Koryazhma, Arkhangelsk region, Russia, August 03–09, 2016), Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, 2016, 84–85 http://www.mathnet.ru/ConfLogos/805/thesis.pdf

15. Vladimir L. Popov, “Around the Abhyankar–Sathaye conjecture”, Documenta Mathematica, 2015, Extra Volume:Alexander S. Merkurjev's Sixtieth Birthday (The Book Series, Vol. 7), 513–528 https://www.math.uni-bielefeld.de/documenta/vol-merkurjev/popov.html, arXiv: 1409.6330 (ISSN 1431-0643 (INTERNET), 1431-0635 (PRINT))  mathnet  mathscinet
16. V. L. Popov, “Finite subgroups of diffeomorphism groups”, Proc. Steklov Inst. Math., 289 (2015), 221–226 , arXiv: 1310.6548v2  mathnet  crossref  crossref  isi (cited: 5)  elib  elib  scopus (cited: 3)
17. V. L. Popov, “Problema Bassa o trianguliruemosti podgrupp grupp Kremony”, V shkola-konferentsiya po algebraicheskoi geometrii i kompleksnomu analizu dlya molodykh matematikov Rossii (g. Koryazhma Arkhangelskoi oblasti, Filial Severnogo (Arkticheskogo) federalnogo universiteta im. M. V. Lomonosova, 17–22 avgusta 2015 g.), Matematicheskii institut im. V.A. Steklova Rossiiskoi akademii nauk, Moskva, 2015, 83–87 http://www.mathnet.ru/ConfLogos/604/thesis-Koryazhma.pdf
18. V. L. Popov, “Number of components of the nullcone”, Proc. Steklov Inst. of Math., 290 (2015), 84–90 , arXiv: 1503.08303  mathnet  crossref  crossref  isi (cited: 2)  elib  elib  scopus (cited: 1)
19. Vladimir L. Popov, “On the equations defining affine algebraic groups”, Pacific J. Math., 279:1-2, Special issue. In memoriam: Robert Steinberg (2015), 423–446 http://msp.org/pjm/2015/279-1/p19.xhtml, arXiv: 1508.02860  mathnet  crossref  mathscinet  isi  scopus (cited: 1)

20. V. L. Popov, “Quotients by conjugation action, cross-sections, singularities,and representation rings”, Representation Theory and Analysis of Reductive Groups: Spherical Spaces and Hecke Algebras (Mathematisches Forschungsinstitut Oberwolfach, 19 January – 25 January 2014), Oberwolfach Reports, 11, no. 1, European Mathematical Society, 2014, 156–159
21. V. L. Popov, “On infinite dimensional algebraic transformation groups”, Transform. Groups, 19:2, special issue dedicated to E. B. Dynkin's 90th anniversary (2014), 549–568 https://www.math.uni-bielefeld.de/LAG/man/523.pdf, arXiv: 1401.0278  mathnet  crossref  mathscinet (cited: 1)  zmath  isi (cited: 5)  elib (cited: 1)  scopus (cited: 3)
22. V. L. Popov, “Jordan groups and automorphism groups of algebraic varieties”, Automorphisms in birational and affine geometry, Springer Proceedings in Mathematics & Statistics, 79, Springer, 2014, 185–213 https://www.math.uni-bielefeld.de/LAG/man/508.pdf, arXiv: 1307.5522  mathnet  crossref  mathscinet  zmath  scopus (cited: 11)
23. V. L. Popov, “Jordaness of the automorphism groups of varieties and manifolds”, Modern Problems of Mathematics and Natural Sciences (Koryazhma, September 15–18, 2014), Northern (Arctic) Federal M. V. Lomonosov University, Koryazhma, 2014, 66–70

24. V. L. Popov, “Tori in the Cremona groups”, Izv. Math., 77:4, special issue on the occasion of I. R. Shafarevich's 90th anniversary (2013), 742–771 https://www.math.uni-bielefeld.de/LAG/man/474.pdf  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 6)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 2)
25. V. L. Popov, “Some subgroups of the Cremona groups”, Affine algebraic geometry, Proceedings of the conference on the occasion of M. Miyanishi's 70th birthday (Osaka, Japan, 3–6 March 2011), World Scientific Publishing Co., Singapore, 2013, 213–242 https://www.math.uni-bielefeld.de/LAG/man/448.pdf  crossref  isi (cited: 7)
26. V. L. Popov, “Algebraic groups and the Cremona group”, Algebraic groups (Mathematisches Forschungsinstitut Oberwolfach, 7 April – 13 April 2013), Oberwolfach Reports, 10, no. 2, European Mathematical Society, 2013, 1053–1055
27. V. L. Popov, “Rationality and the FML invariant”, Journal of the Ramanujan Mathematical Society, 28A (2013), 409–415 http://www.mathjournals.org/jrms/2013-028-000/2013-28A-SPL-017.html, https://www.math.uni-bielefeld.de/LAG/man/485.pdf (special Issue-2013 dedicated to C. S. Seshadri's 80th birthday)  mathnet  mathscinet (cited: 1)  zmath  isi (cited: 2)

28. V. L. Popov, “Problems for the problem session”, International conference “Groups of Automorphisms in Birational and Affine Geometry” (Levico Terme (Trento), October 29th – November 3rd, 2012), 2012 , 2 pp. http://www.science.unitn.it/cirm/Trento_postersession.html

29. J.-L. Colliot-Thélène, B. Kunyavskiĭ, V. L. Popov, Z. Reichstein, “Is the function field of a reductive Lie algebra purely transcendental over the field of invariants for the adjoint action?”, Compos. Math., 147:2 (2011), 428–466  crossref  mathscinet (cited: 12)  zmath  isi (cited: 8)  scopus (cited: 6)
30. V. L. Popov, “Cross-sections, quotients, and representation rings of semisimple algebraic groups”, Transform. Groups, 16:3, special issue dedicated to Tonny Springer on the occasion of his 85th birthday (2011), 827–856  crossref  mathscinet (cited: 5)  zmath  isi (cited: 4)  elib (cited: 4)  scopus (cited: 4)
31. V. L. Popov, “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry: the Russell Festschrift, CRM Proceedings and Lecture Notes, 54, Amer. Math. Soc., 2011, 289–311 https://www.math.uni-bielefeld.de/LAG/man/375.pdf  mathscinet (cited: 13)  zmath  isi (cited: 18)
32. V. L. Popov, “Invariant rational functions on semisimple Lie algebras and the Gelfand–Kirillov conjecture”, Algebra and Mathematical Logic, International conference commemorating $100$th birthday of professor V. V. Morozov (Kazan, September 25–30, 2011), Kazan Federal Univ., Kazan, 2011, 19

33. V. Popov, “Discrete complex reflection groups”, Geometry, topology, algebra and number theory, applications, The international conference dedicated to the 120th anniversary of Boris Nikolaevich Delone (1890–1980) (August 16–20, 2010), Steklov Mathematical Institute, Moscow State University, Moscow, 2010, 140

34. V. L. Popov, “Two orbits: When is one in the closure of the other?”, Proc. Steklov Inst. Math., 264 (2009), 146–158  mathnet  crossref  mathscinet  isi (cited: 4)  elib (cited: 4)  elib (cited: 4)  scopus (cited: 4)
35. V. L. Popov, “Algebraic Cones”, Math. Notes, 86:6 (2009), 892–894  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 1)  elib  scopus

36. V. L. Popov, “Irregular and singular loci of commuting varieties”, Transformation Groups, 13:3-4, special issue dedicated to Bertram Kostant on the occasion of his 80th birthday (2008), 819–837  crossref  mathscinet (cited: 9)  zmath  isi (cited: 9)  elib (cited: 8)  scopus (cited: 12)

37. V. L. Popov, “Generically multiple transitive algebraic group actions”, Proceedings of the International Colloquium on Algebraic Groups and Homogeneous Spaces (Mumbai, 2004), Tata Institute of Fundamental Research, 19, Narosa Publishing House, Internat. distrib. by American Mathematical Society, New Delhi, 2007, 481–523  mathscinet (cited: 12)  zmath
38. V. L. Popov, “Tensor product decompositions and open orbits in multiple flag varieties”, J. Algebra, 313:1 (2007), 392–416  crossref  mathscinet (cited: 5)  zmath  isi (cited: 4)  elib (cited: 5)  scopus (cited: 4)
39. N. Lemire, V. L. Popov, Z. Reichstein, “On the Cayley degree of an algebraic group”, Proceedings of the XVIth Latin American Algebra Colloquium (Spanish), Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 2007, 87–97  mathscinet  zmath
40. V. L. Popov, “Quasihomogeneous affine threefolds”, Affine algebraic geometry (Oberwolfach, January 7–14, 2007), Oberwolfach Reports, 4, no. 1, Europ. Math. Soc., 2007, 13–16 http://www.ems-ph.org/journals/show_abstract.php?issn=1660-8933&vol=4&iss=1&rank=1
41. V. L. Popov, “Birationally nonequivalent linear actions. Cayley degrees of simple algebraic groups. Singularities of two-dimensional quotients”, Affine Algebraic Geometry (Oberwolfach, January 7–14, 2007), Oberwolfach Reports, 4, no. 1, Europ. Math. Soc., 2007, 75–78 http://www.ems-ph.org/journals/show_abstract.php?issn=1660-8933&vol=4&iss=1&rank=1
42. V. L. Popov, “Finite linear groups, lattices, and products of elliptic curves”, International Algebraic Conference Dedicated to the 100th Anniversary of D. K. Faddeev (St. Petersburg, September 24–29, 2007), St. Petersburg State University, St. Petersburg Department of the V. A. Steklov Institute of Mathematics RAS, 2007, 148–149

43. V. L. Popov, Yu. G. Zarhin, “Finite linear groups, lattices, and products of elliptic curves”, J. Algebra, 305:1 (2006), 562–576  crossref  mathscinet (cited: 1)  zmath  isi (cited: 1)  elib (cited: 1)  scopus (cited: 1)
44. M. Losik, P. W. Michor, V. L. Popov, “On polarizations in invariant theory”, J. Algebra, 301:1 (2006), 406–424  crossref  mathscinet (cited: 7)  zmath  isi (cited: 8)  elib (cited: 7)  scopus (cited: 8)
45. N. Lemire, V. L. Popov, Z. Reichstein, “Cayley groups”, J. Amer. Math. Soc., 19:4 (2006), 921–967  crossref  mathscinet (cited: 9)  zmath  isi (cited: 9)  elib (cited: 8)  scopus (cited: 9)

46. V. L. Popov, “Projective duality and principal nilpotent elements of symmetric pairs”, Lie groups and invariant theory, Amer. Math. Soc. Transl. Ser. 2, 213, Amer. Math. Soc., Providence, RI, 2005, 215–222  mathscinet (cited: 2)  zmath
47. V. L. Popov, “Roots of the affine Cremona group; Rationality of homogeneous spaces; Two locally nilpotent derivations”, Affine algebraic geometry, Contemp. Math., 369, Amer. Math. Soc., Providence, RI, 2005, 12–16

48. V. L. Popov, E. A. Tevelev, “Self-dual projective algebraic varieties associated with symmetric spaces”, Algebraic transformation groups and algebraic varieties, Proceedings of the International conference “Interesting Algebraic Varieties Arising in Algebraic Transformation Groups Theory” (the Erwin Schrödinger Institute, Vienna, October 22–26, 2001), Invariant Theory and Algebraic Transformation Groups, III, Encyclopaedia of Mathematical Sciences, 132, eds. V. L. Popov, Springer, Heidelberg, Berlin, 2004, 131–167  mathscinet (cited: 7)  zmath  isi (cited: 6)
49. V. L. Popov, “Moment polytopes of nilpotent orbit closures; Dimension and isomorphism of simple modules; and Variations on the theme of J. Chipalkatti”, Invariant theory in all characteristics, CRM Proc. Lecture Notes, 35, Amer. Math. Soc., Providence, RI, 2004, 193–198  mathscinet (cited: 2)  zmath
50. N. A'Campo, V. L. Popov, The computer algebra package HNC (Hilbert Null Cone), http://www.geometrie.ch/, Mathematisches Institut Universität Basel, Basel, 2004 , 12 pp.

51. N. L. Gordeev, V. L. Popov, “Automorphism groups of finite dimensional simple algebras”, Ann. of Math. (2), 158:3 (2003), 1041–1065  crossref  mathscinet (cited: 6)  zmath  isi (cited: 6)  elib (cited: 5)  scopus (cited: 5)
52. M. Losik, P. W. Michor, V. L. Popov, “Invariant tensor fields and orbit varieties for finite algebraic transformation groups”, A Tribute to C. S. Seshadri: Perspectives in Geometry and Representation Theory (Chennai, 2002), Hindustan Book Agency (India), Chennai, 2003, 346–378  mathscinet (cited: 4)  zmath
53. V. L. Popov, “The Cone of Hilbert nullforms”, Proc. Steklov Inst. Math., 241 (2003), 177–194  mathnet  mathscinet  zmath

54. V. L. Popov, “Self-dual algebraic varieties and nilpotent orbits”, Proceedings of the international conference “Algebra, Arithmetic and Geometry”, Part II (Mumbai, 2000), Tata Institute of Fundamental Research, 16, Narosa Publishing House, intern. distrib. by American Mathematical Society, New Delhi, 2002, 509–533  mathscinet (cited: 6)  zmath
55. V. L. Popov, “Constructive invariant theory”, Collection of Papers Commemorating 40th Anniversary of MGIEM, MIEM Publ., Moscow, 2002, 103–106

56. V. L. Popov, “On polynomial automorphisms of affine spaces”, Izv. Math., 65:3 (2001), 569–587  mathnet  crossref  crossref  mathscinet  zmath  elib  scopus
57. V. Popov, “Modern developments in invariant theory”, Plenary Address at Österreichische Mathematische Gesellschaft – 15 Kongress, Jahrestagung der Deutschen Mathematikervereinigung (Vienna, 16–22 September), Deutsche Mathematikervereinigung, Österreichische Mathematische Gesellschaft, 2001, 48

58. P. I. Katsylo, V. L. Popov, “On Fixed Points of Algebraic Actions on $\mathbb{C}^n$”, Funct. Anal. Appl., 34:1 (2000), 33–40  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus
59. V. L. Popov, Generators and relations of the affine coordinate rings of connected semisimple algebraic groups, preprint ESI, no. 972, The Erwin Schrödinger Institute for Mathematical Physics, Vienna, 2000 , 12 pp.

60. V. L. Popov, G. V. Sukhotsky, Analytic Geometry. Lectures and Exercises, MGIEM, SITMO Publ., Moscow, 1999 , ii+232 pp.
61. Vladimir Popov, “Algebraic groups of automorphisms of polynomial rings”, Colloque International “Théorie des Groupes”. Journées Solstice d'été 1999 (Institut de Mathématiques de Jussieu, 75005 Paris, France, 17, 18, 19 juin 1999), l'Université Paris 7–Denis Diderot, 1999, 15 https://www.imj-prg.fr/grg/archives/Colloques/1999Solstice/

62. V. L. Popov, Discrete complex reflection groups, Workshop on Reflection Groups, January 13–21, SISSA, Trieste, Italy, 1998 , 23 pp.
63. V. L. Popov, “Comments to the papers by D. Hilbert “Über die Theorie der algebraischen Formen” and “Über die vollen Invariantensysteme””: D. Hilbert, Selected Works, Factorial Publ., Moscow, 1998, 490–517
64. V. L. Popov, “Reductive subgroups of $Aut(A^3)$ and $Aut(A^4)$”, Tagungsbericht 14/1998, Algebraische Gruppen, 05.04–11.04.1998 (Mathematisches Forschungsinstitut Oberwolfach, 05.04–11.04,1998), v. 14, Mathematisches Forschungsinstitut Oberwolfach, 1998, 13–14 https://www.mfo.de/occasion/9815/www_view

65. V. Popov, G. Röhrle, “On the number of orbits of a parabolic subgroup on its unipotent radical”, Algebraic Groups and Lie Groups, Australian Mathematical Society Lecture Series, 9, Cambridge University Press, Cambridge, 1997, 297–320  mathscinet (cited: 16)  zmath
66. V. L. Popov, “A finiteness theorem for parabolic subgroups of fixed modality”, Indag. Math. (N.S.), 8:1 (1997), 125–132  crossref  mathscinet (cited: 7)  zmath  isi (cited: 10)  elib (cited: 9)  scopus (cited: 10)
67. V. L. Popov, “On the Closedness of Some Orbits of Algebraic Groups”, Funct. Anal. Appl., 31:4 (1997), 286–289  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  scopus (cited: 2)
68. Vladimir Popov, “Orbits of parabolic subgroups acting on its unipotent radicals”, Tagungsbericht 42/1997. Einh"ullende Algebren und Darstellungstheorie. 02.11–08.11.1997 (Mathematisches Forschungsinstitut Oberwolfach. 02.11–08.11.1997), v. 42, Mathematisches Forschungsinstitut Oberwolfach, 1997, 13 http://oda.mfo.de/bsz325095604.html

69. V. L. Popov, “An analogue of M. Artin's conjecture on invariants for nonassociative algebras”, Lie Groups and Lie Algebras: E. B. Dynkin's Seminar, American Mathematical Society Translations Ser. 2, 169, Amer. Math. Soc., Providence, RI, 1995, 121–143  mathscinet (cited: 4)  zmath  isi (cited: 24)

70. V. Popov, “Sections in invariant theory”, Proceedings of The Sophus Lie Memorial Conference (Oslo, 1992), Scandinavian University Press, Oslo, 1994, 315–361  mathscinet (cited: 28)
71. V. L. Popov, “Divisor class groups of the semigroups of the highest weights”, J. Algebra, 168:3 (1994), 773–779  crossref  mathscinet  zmath  isi  elib  scopus
72. V. L. Popov, E. B. Vinberg, “Invariant theory”, Encyclopaedia of Mathematical Sciences, 55, Algebraic Geometry IV, Springer-Verlag, Berlin, Heidelberg, New York, 1994, 123–284

73. V. L. Popov, “Singularities of closures of orbits”, Quantum Deformations of Algebras and Their Representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), Israel Math. Conference Proceedings, 7, Bar-Ilan University, Ramat Gan, 1993, 133–141  mathscinet (cited: 1)  zmath

74. V. L. Popov, “On the “lemma of Seshadri””, Arithmetic and Geometry of Varieties, Samara State Univ., Samara, 1992, 133–139  mathscinet  zmath
75. V. L. Popov, È. B. Vinberg, “Some open problems in invariant theory”, Proc. Internat. Conf. in Algebra, Part 3 (Novosibirsk, 1989), Contemporary Mathematics, 131, Part 3, American Mathematical Society, Providence, RI, 1992, 485–497  crossref  mathscinet (cited: 3)  isi (cited: 53)
76. V. L. Popov, Groups, generators, syzygies, and orbits in invariant theory, Translations of Mathematical Monographs, 100, Amer. Math. Soc., Providence, RI, 1992 , vi+245 pp.  mathscinet (cited: 14)  zmath
77. V. L. Popov, “On the “lemma of Seshadri””, Lie Groups, Their Discrete Subgroups, and Invariant Theory, Advances in Soviet Mathematics, 8, Amer. Math. Soc., Providence, RI, 1992, 167–172  mathscinet (cited: 3)

78. V. L. Popov, “Invariant theory”, Algebra and Analysis (Kemerovo, 1988), Amer. Math. Soc. Transl. Ser. 2, 148, Amer. Math. Soc., Providence, RI, 1991, 99–112  mathscinet (cited: 5)

79. V. L. Popov, “When are the stabilizers of all nonzero semisimple points finite?”, Operator algebras, unitary representations, nveloping algebras, and invariant theory (Paris, 1989), Progress in Mathematics, 92, Birkhäuser Boston, Boston, MA, 1990, 541–559  mathscinet (cited: 1)  isi (cited: 47)

80. V. L. Popov, “Some applications of algebra of functions on $G/U$”, Group Actions and Invariant Theory (Montreal, PQ, 1988), CMS Conference Proceedings, 10, Amer. Math. Soc., Providence, RI, 1989, 157–166  mathscinet
81. V. L. Popov, “Automorphism groups of polynomial algebras”, Problems in Algebra (Gomel'), v. 4, Universitetskoe, Minsk, 1989, 4–16  mathscinet

82. V.. L. Popov, È. B. Vinberg, “Invariant theory”, Algebraic Geometry–4, Encyclopaedia of Mathematical Sciences, 55, Springer-Verlag, Berlin, Heidelberg, 1994, 123–284  mathnet  mathscinet  zmath

83. V. L. Popov, “Modules with finite stabilizers of nonzero semisimple elements”, Proc. Intern. Conference commemorating A. I. Mal'cev (Novosibirsk), Math. Inst. Sib. Branch Acad. Sci., Novosibirsk, 1989, 108

84. V. L. Popov, “On the actions of ${\mathbf G}_a$ on ${\mathbf A}^n$”, Arithmetic and geometry of varieties, Kuibyshev. Gos. Univ., Kuybyshev, 1988, 93–98  mathscinet

85. V. L. Popov, “Closed orbits of Borel subgroups”, Math. USSR-Sb., 63:2 (1989), 375–392  mathnet  crossref  mathscinet  zmath

86. V. L. Popov, “One and a half centuries in the theory of invariants”, Methodological analysis of mathematical theories, Akad. Nauk SSSR Prezid., Tsentral. Sovet Filos. (Metod.) Sem., Moscow, 1987, 235–256  mathscinet
87. V. L. Popov, “Modern developments in invariant theory”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, Amer. Math. Soc., Providence, RI, 1987, 394–406  mathscinet (cited: 1)
88. V. L. Popov, “On actions of ${\mathbf G}_a$ on ${\mathbf A}^n$”, Algebraic groups (Utrecht, 1986), Lecture Notes in Math., 1271, Springer, Berlin, 1987, 237–242  crossref  mathscinet (cited: 9)  isi (cited: 12)
89. V. L. Popov, “Stability of actions of Borel subgroups”, Proc. of the XIX-th All Union Algebraic Conference (L'vov), v. 1, Steklov Math. Inst. Acad. Sci. USSR, Moscow, 1987, 48
90. V. L. Popov, “Contractions of the actions of reductive algebraic groups”, Math. USSR-Sb., 58:2 (1987), 311–335  mathnet  crossref  mathscinet  zmath

91. V. L. Popov, “On one-dimensional unipotent subgroups of the automorphism group of a polynomial algebra”, Proc. of the X-th All Union Symposium on Groups Theory (Minsk), Math. Isnt. Belorus. Acad. Sci., 1986, 182

92. H. Kraft, V. L. Popov, “Semisimple group actions on the three-dimensional affine space are linear”, Comment. Math. Helv., 60:3 (1985), 466–479  crossref  mathscinet (cited: 19)  zmath  isi (cited: 25)  elib (cited: 7)  scopus (cited: 24)

93. V. L. Popov, “Comments to the papers by H. Weyl “Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare TYransformationen”, "Spinors in $n$ dimensions" and “Eine für die Valenztheorie geeignete Basis der binären vektorinvarianten””, H. Weyl, Selected Works, Nauka, Moscow, 1984, 471–478; 461–467  mathscinet

94. V. L. Popov, “Homological dimension of algebras of invariants”, J. Reine Angew. Math., 341 (1983), 157–173  crossref  mathscinet (cited: 3)  zmath  isi (cited: 10)  scopus (cited: 8)

95. V. L. Popov, “Syzygies in the theory of invariants”, Math. USSR-Izv., 22:3 (1984), 507–585  mathnet  crossref  mathscinet  zmath

96. V. L. Popov, “On homological dimension of algebras of invariants”, Proc. of the XVII-th All Union Algebraic Conference (Minsk), Math. Inst. Belorus. Acad. Sci, 1983, 152–153

97. V. L. Popov, Discrete Somplex Reflection Groups, Lectures delivered at the Math. Institute Rijksuniversiteit Utrecht in October 1980, Commun. Math. Inst. Rijksuniv. Utrecht, 15, Rijksuniversiteit Utrecht Mathematical Institute, Utrecht, 1982 , 89 pp.  mathscinet (cited: 14)  zmath

98. V. L. Popov, “A finiteness theorem for representations with a free algebra of invariants”, Math. USSR-Izv., 20:2 (1983), 333–354  mathnet  crossref  mathscinet  zmath

99. V. Grigor'ev, V. L. Popov, D. D. Solncev, Problems in algebra, MIEM Publ., Moscow, 1982 , 98 pp.

100. V. L. Popov, “Constructive invariant theory”, Young Tableaux and Schur Functors in Algebra and Geometry (Toruń, 1980), Astérisque, 87, Soc. Math. France, Paris, 1981, 303–334  mathscinet (cited: 11)

101. V. L. Popov, “The constructive theory of invariants”, Math. USSR-Izv., 19:2 (1982), 359–376  mathnet  crossref  mathscinet  zmath

102. V. L. Popov, “Appendix 3 to the Russian translation of the book”: T. A. Springer, Invariant theory”, Mathematics. News in Foreign Science, 24, eds. V. L. Popov, Mir, Moscow, 1981, 153–182

103. V. L. Popov, “Complex root systems and their Weyl groups”, Proc. of the VII All Union Symposium on Group Theory (Krasnoyarsk), Math. Inst. Sib. Branch Acad. Sci., Krasnoyarsk Univ., Krasnoyarsk, 1980, 91
104. V. L. Popov, “Constructive invariant theory”, Proc. internat. conf. “Young Tableaux and Schur Functions in Algebra and Geometry” (Toruń, Poland), Inst. Math. Acad. Polon. Sci., 1980, 10–11

105. V. L. Popov, “Hilbert's theorem on invariants”, Soviet Math. Dokl., 20:6 (1979), 1318–1322  mathscinet  zmath
106. V. L. Popov, “On Hilbert's fourteenth problem”, Proc. of the XV-th All Union Algebraic Conference (Krasnoyarsk), Math. Inst. Sib. Branch Acad. Sci., Krasnoyarsk Univ., Krasnoyarsk, 1979, 123

107. V. L. Popov, “Classification of spinors of dimension fourteen”, Trans. Mosc. Math. Soc., 1 (1980), 181–232  mathnet  mathscinet  zmath  zmath

108. V. L. Popov, “Algebraic curves with an infinite automorphism group”, Math. Notes, 23:2 (1978), 102–108  mathnet  crossref  mathscinet  zmath  elib (cited: 1)  scopus (cited: 1)

109. V. L. Popov, “One conjecture of Steinberg”, Funct. Anal. Appl., 11:1 (1977), 70–71  mathnet  crossref  mathscinet  zmath  scopus (cited: 1)
110. V. L. Popov, “Classification of the spinors of dimension fourteen”, Uspekhi Mat. Nauk, 32:1(193) (1977), 199–200  mathnet  mathscinet  zmath
111. V. L. Popov, “Crystallographic groups generated by affine unitary reflection”, Proc. of the XIV-th All Union Algebraic Conference (Novosibirsk), v. 1, Math. Inst. Sib. Branch Acad. Sci., Novosibirsk Univ., Novosibirsk, 1977, 55–56

112. V. G. Kac, V. L. Popov, E. B. Vinberg, “Sur les groupes linéaires algébriques dont l'algèbre des invariants est libre”, C. R. Acad. Sci. Paris Sér. A-B, 283:12 (1976), A875–A878  mathscinet (cited: 12)
113. V. L. Popov, “Representations with a free module of covariants”, Funct. Anal. Appl., 10:3 (1976), 242–244  mathnet  crossref  mathscinet  zmath  scopus (cited: 24)

114. V. L. Popov, “The classification of representations which are exceptional in the sense of Igusa”, Funct. Anal. Appl., 9:4 (1975), 348–350  mathnet  crossref  mathscinet  zmath  scopus (cited: 3)
115. V. L. Popov, “Classification of three-dimensional affine algebraic varieties that are quasi-homogeneous with respect to an algebraic group”, Math. USSR-Izv., 9:3 (1975), 535–576  mathnet  crossref  mathscinet  zmath

116. V. L. Popov, “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles”, Math. USSR-Izv., 8:2 (1974), 301–327  mathnet  crossref  mathscinet  zmath
117. V. L. Popov, “Structure of the closure of orbits in spaces of finite-dimensional linear SL(2) representations”, Math. Notes, 16:6 (1974), 1159–1162  mathnet  crossref  mathscinet  zmath  scopus (cited: 1)

118. V. L. Popov, “Classification of affine algebraic surfaces that are quasihomogeneous with respect to an algebraic group”, Math. USSR-Izv., 7:5 (1973), 1039–1056  mathnet  crossref  mathscinet  zmath
119. V. L. Popov, “Quasihomogeneous affine algebraic varieties of the group SL(2)”, Math. USSR-Izv., 7:4 (1973), 793–831  mathnet  crossref  mathscinet  zmath

120. È. B. Vinberg, V. L. Popov, “On a class of quasihomogeneous affine varieties”, Math. USSR-Izv., 6:4 (1972), 743–758  mathnet  crossref  mathscinet  zmath
121. V. L. Popov, “On the stability of the action of an algebraic group on an algebraic variety”, Math. USSR-Izv., 6:2 (1972), 367–379  mathnet  crossref  mathscinet  zmath
122. V. L. Popov, “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles”, Uspekhi Mat. Nauk, XXVII:4 (1972), 191–192  mathnet

123. E. M. Andreev, V. L. Popov, “Stationary subgroups of points of general position in the representation space of a semisimple Lie group”, Funct. Anal. Appl., 5:4 (1971), 265–271  mathnet  crossref  mathscinet  zmath  scopus (cited: 10)
124. V. L. Popov, “Regular action of a semisimple algebraic group on an affine factorial algebra”, Proc. of the XI-th All Union Algebraic Colloquium (Kishinev), Math. Istitute Mold. Acad. Sci., Kishinev, 1971, 75

125. V. L. Popov, “Stability criteria for the action of a semisimple group on a factorial manifold”, Math. USSR-Izv., 4:3 (1970), 527–535  mathnet  crossref  mathscinet  zmath
Home page

© Steklov Mathematical Institute of RAS, 2004–2018