|
|
|
Rakhmanov Evguenii Andreevich
(recent publications)
|
|
2018 |
1. |
E. A. Rakhmanov, “Zero distribution for Angelesco Hermite–Padé polynomials”, Russian Math. Surveys, 73:3 (2018), 457–518 (cited: 2) |
|
2016 |
2. |
Andrei Martínez-Finkelshtein, Evguenii A. Rakhmanov, Sergey P. Suetin, “Asymptotics of type I Hermite–Padé polynomials for semiclassical functions”, Contemp. Math., 661, 2016, 199–228 , arXiv: 1502.01202 (cited: 2) (cited: 3) |
3. |
E. A. Rakhmanov, “The Gonchar-Stahl $\rho^2$-theorem and associated directions in the theory of rational approximations of analytic functions”, Sb. Math., 207:9 (2016), 1236–1266 (cited: 2) |
|
2015 |
4. |
A. Martínez-Finkelshtein, R. Orive, E. A. Rakhmanov, “Phase transitions and equilibrium measures in random matrix models”, Comm. Math. Phys., 333:3 (2015), 1109–1173 (cited: 3) (cited: 2) (cited: 6) |
|
2013 |
5. |
A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “A differential equation for Hermite–Padé polynomials”, Russian Math. Surveys, 68:1 (2013), 183–185 (cited: 5) (cited: 3) (cited: 3) (cited: 3) |
6. |
E. A. Rakhmanov, S. P. Suetin, “The distribution of the zeros of the Hermite-Padé polynomials for a pair of functions forming a Nikishin system”, Sb. Math., 204:9 (2013), 1347–1390 (cited: 19) (cited: 9) (cited: 9) (cited: 13) |
|
2012 |
7. |
E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions and their applications, 11th International Symposium (August 29–September 2, 2011 Universidad Carlos III de Madrid Leganés, Spain), Contemp. Math., 578, eds. J. Arvesú and G. López Lagomasino, Amer. Math. Soc., Providence, RI, 2012, 195–239 |
8. |
A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Heine, Hilbert, Padé, Riemann, and Stieltjes: a John Nuttall's work 25 years later”, Recent advances in orthogonal polynomials, special functions and their applications, 11th International Symposium (August 29–September 2, 2011 Universidad Carlos III de Madrid Leganés, Spain), Contemp. Math., 578, eds. J. Arvesú and G. López Lagomasino, Amer. Math. Soc., Providence, RI, 2012, 165–193 (cited: 14) |
9. |
E. A. Rakhmanov, S. P. Suetin, “Asymptotic behaviour of the Hermite–Padé polynomials of the 1st kind for a pair of functions forming a Nikishin system”, Russian Math. Surveys, 67:5 (2012), 954–956 (cited: 7) (cited: 3) (cited: 3) (cited: 5) |
|
2011 |
10. |
A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Variation of the equilibrium measure and the $S$-property of a stationary compact set”, Russian Math. Surveys, 66:1 (2011), 176–178 (cited: 9) (cited: 6) (cited: 6) (cited: 5) |
11. |
E. A. Rakhmanov, “The asymptotics of Hermite-Padé polynomials for two Markov-type functions”, Sb. Math., 202:1 (2011), 127–134 (cited: 10) (cited: 8) (cited: 8) (cited: 10) |
12. |
A. Martínez-Finkelshtein, E. A. Rakhmanov, “Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials”, Comm. Math. Phys., 302:1 (2011), 53–111 (cited: 35) (cited: 39) |
13. |
A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “Padé–Chebyshev approximants of multivalued analytic functions, variation of equilibrium energy, and the $S$-property of stationary compact sets”, Russian Math. Surveys, 66:6 (2011), 1015–1048 (cited: 9) (cited: 5) (cited: 5) (cited: 7) |
14. |
A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Variation of the equilibrium energy and the $S$-property of stationary compact sets”, Sb. Math., 202:12 (2011), 1831–1852 (cited: 20) (cited: 13) |
|
2010 |
15. |
A. Martínez-Finkelshtein, E. A. Rakhmanov, “On asymptotic behavior of Heine-Stieltjes and Van Vleck polynomials”, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., 507, Amer. Math. Soc., Providence, RI, 2010, 209–232 |
16. |
A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, On the convergence of Chebyshev–Pade approximations to real-valued algebraic functions, 2010 , 10 pp., arXiv: 1009.4813 |
|