|
|
|
Dymov Andrey Victorovich
(recent publications)
|
|
2020 |
1. |
A. V. Dymov, “Asimptoticheskie otsenki singulyarnykh integralov ot drobei, znamenateli kotorykh soderzhat proizvedenie blochnykh kvadratichnykh form”, Izbrannye voprosy matematiki i mekhaniki, Sbornik statei. K 70-letiyu so dnya rozhdeniya akademika Valeriya Vasilevicha Kozlova, Tr. MIAN, 310, MIAN, M., 2020, 161–175 |
2. |
A. V. Dymov, S. B. Kuksin, “On the Zakharov-Lvov stochastic model for wave turbulence”, Dokl. RAN. Math. Inf. Proc. upr., 491:1 (2020), 29–37 |
|
2019 |
3. |
Alexander I. Bufetov, Andrey V. Dymov, “A functional limit theorem for the sine-process”, Int. Math. Res. Not. IMRN, 2019:1 (2019), 249–319 , arXiv: 1701.00111 |
4. |
Alexander I. Bufetov, Andrey V. Dymov, Hirofumi Osada, “The logarithmic derivative for point processes with equivalent Palm measures”, J. Math. Soc. Japan, 71:2 (2019), 451–469 , arXiv: 1707.01773 |
5. |
Andrey Dymov, Sergei Kuksin, Formal expansions in stochastic model for wave turbulence 1: kinetic limit, 2019 , 67 pp., arXiv: 1907.04531 |
6. |
Andrey Dymov, Sergei Kuksin, Formal expansions in stochastic model for wave turbulence 2: method of diagram decomposition, 2019 , 52 pp., arXiv: 1907.02279 |
|
2018 |
7. |
A. V. Dymov, “Asymptotic Behavior of a Network of Oscillators Coupled to Thermostats of Finite Energy”, Russ. J. Math. Phys., 25:2 (2018), 183–199 (cited: 1) |
|
2016 |
8. |
Andrey Dymov, “Nonequilibrium statistical mechanics of weakly stochastically perturbed system of oscillators”, Ann. Henri Poincaré, 17:7 (2016), 1825–1882 (cited: 1) (cited: 3) (cited: 2) |
9. |
A. V. Dymov, “Nonequilibrium statistical mechanics of a solid immersed in a continuum”, Proc. Steklov Inst. Math., 295 (2016), 95–128 (cited: 1) (cited: 1) |
|
2015 |
10. |
A. Dymov, “Nonequilibrium statistical mechanics of Hamiltonian rotators with alternated spins”, J. Stat. Phys., 158:4 (2015), 968–1006 (cited: 4) (cited: 4) |
|
2012 |
11. |
A. V. Dymov, “Dissipative effects in a linear Lagrangian system with infinitely many degrees of freedom”, Izv. Math., 76:6 (2012), 1116–1149 (cited: 5) (cited: 2) (cited: 2) (cited: 5) |
|