Home page
Home page
Home page
Russian page
English page
Math-Net.Ru | MMS | Web of Science | Scopus | MathSciNet | zbMATH | Web-mail 

   
 About the Institute
 Staff publications
 Administration
 Academic Council
 Dissertation Councils
 Departments
Staff 
 Seminars
 Conferences
 Events
 Journals and Books
 In memoriam
 Photogallery
 Library


    Address
8 Gubkina St. Moscow,
119991, Russia
Tel.: +7(495) 984 81 41
Fax: +7(495) 984 81 39
Web site: www.mi-ras.ru
E-mail: steklov@mi.ras.ru

View Map
Directions

   
Sergeev Armen Glebovich
(full list of publications)
| by years | scientific publications | by types |



   2018
1. A. G. Sergeev, Twistor Geometry and Gauge Fields, 2018  hlocal  hlocal
2. A. G. Sergeev, “Twistor Geometry and Gauge Fields”, Tr. Mosk. Mat. Obs., 79, no. 2, 2018 (to appear)  mathnet
3. Armen Sergeev, “Mathematical Tomography”, Biostat. Biometrics Open Acc. J., 6:5 (2018), 555697 , 4 pp.  mathnet  crossref

   2017
4. A. G. Sergeev, “Spin Geometry of Dirac and Noncommutative Geometry of Connes”, Proc. Steklov Inst. Math., 298 (2017), 256–293  mathnet  crossref  crossref  mathscinet  isi  elib  elib  scopus
5. A. G. Sergeev, “Noncommutative geometry and analysis”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 137, VINITI, Moscow, 2017, 61–81  mathnet
6. Sergeev Armen, “Seiberg-Witten theory as a complex version of Abelian Higgs model”, Sci. China, Math., 60:6 (2017), 1089–1100  mathnet  crossref  isi  scopus
7. A. G. Sergeev, “String theory and quasiconformal maps”, Lobachevskii J. Math., 38:2 (2017), 352–363  mathnet  crossref  isi  scopus
8. A. Sergeev, “Adiabatic limit in Abelian Higgs model with application to Seiberg–Witten equations”, Phys. Part. Nucl. Lett., 14:2 (2017), 341–346  mathnet  crossref  isi  scopus

   2016
9. A. G. Sergeev, “Quantum Calculus and Quasiconformal Mappings”, Math. Notes, 100:1 (2016), 123–131  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 3)  elib  elib  scopus (cited: 1)
10. A. G. Sergeev, “Magnetic Schrödinger operator from the point of view of noncommutative geometry”, CMFD, 59 (2016), 192–200  mathnet  mathscinet
11. Armen Sergeev, “Adiabatic limit in GinzburgLandau and SeibergWitten equations”, Geometric Methods in Physics (XXXIV Workshop, Białowieża, Poland, June 28 – July 4, 2015), Trends Math., Trends Math., 2016, 321–330  mathnet  isi  elib  scopus
12. A. G. Sergeev, Introduction to noncommutative geometry, 2016  hlocal  hlocal
13. Armen Sergeev, “The Sobolev space of half-differentiable functions and quasisymmetric homeomorphisms”, Georgian Math. J., 23:4 (2016), 615–622  mathnet  crossref  mathscinet  zmath  isi (cited: 1)  elib  scopus (cited: 1)
14. A. G. Sergeev, “Quantization of the Sobolev space of half-differentiable functions”, Sb. Math., 207:10 (2016), 1450–1457  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 2)  elib  scopus

   2015
15. A. G. Sergeev, “Twistor interpretation of harmonic spheres and Yang–Mills fields”, Mathematics, 3:1 (2015), 47–75  mathnet (cited: 2)  crossref  zmath  isi (cited: 2)
16. A. G. Sergeev, “Adiabatic Limit in the Ginzburg–Landau and Seiberg–Witten Equations”, Proc. Steklov Inst. Math., 289 (2015), 227–285  mathnet  crossref  crossref  isi (cited: 7)  elib (cited: 3)  elib (cited: 3)  scopus (cited: 7)
17. A. Sergeev, “On the moduli space of Yang-Mills fields on $\mathbb R^4$”, Geometric Methods in Physics, XXXIII Workshop, Białowieża, Poland, June 29 – July 5, 2014, Trends in Mathematics, eds. P. Kielanowski, P. Bieliavsky, A. Odzijewicz, T. Voronov, Birkhauser, Basel, 2015, 167–176  mathnet  crossref

   2017
18. A. G. Sergeev, “On two geometric problems arising in mathematical physics”, J. Math. Sci., 223:6 (2017), 756–762  mathnet  crossref  mathscinet  elib

   2015
19. A. G. Sergeev, “Matematika i fizika: skovannye odnoi tsepyu”, Beskonechnomernyi analiz, stokhastika, matematicheskoe modelirovanie: novye zadachi i metody. Problemy matematicheskogo i estestvennonauchnogo obrazovaniya, Sbornik statei Mezhdunarodnoi konferentsii, eds. A. I. Kirillov, S. A. Rozanova, Rossiiskii universitet druzhby narodov, M., 2015, 71–77  elib

   2014
20. A. G. Sergeev, Xiangyu Zhou, “Invariant domains of holomorphy: twenty years later”, Proc. Steklov Inst. Math., 285 (2014), 241–250  mathnet  crossref  crossref  isi (cited: 1)  elib  elib  scopus (cited: 1)
21. A. Sergeev, “Harmonic spheres conjecture”, Concrete operators, spectral theory, operators in harmonic analysis and approximation, Oper. Theory Adv. Appl., 236, Birkhäuser/Springer, Basel, 2014, 463–473  crossref  mathscinet
22. A. G. Sergeev, Lectures on functional analysis, Lekts. Kursy NOC, 23, Steklov Math. Inst., RAS, Moscow, 2014 , 102 pp.  mathnet  mathnet  crossref  crossref  elib
23. I. V. Beloshapka, A. G. Sergeev, “Harmonic spheres in the Hilbert-Schmidt Grassmannian”, Topology, Geometry, Integrable Systems, and Mathematical Physics: Novikov's Seminar 2012–2014, Advances in the Mathematical Sciences, Amer. Math. Soc. Transl. Ser. 2, 234, eds. V. M. Buchstaber, B. A. Dubrovin, I. M. Krichever, Amer. Math. Soc., Providence, RI, 2014, 13–31  mathscinet
24. A. G. Sergeev, Lectures on universal Teichmüller space, EMS Series of Lectures in Mathematics, EMS Publshing House, Zürich, 2014 , 104 pp.  zmath
25. A. Sergeev, “Quantization of universal Teichmüller space”, Phys. Part. Nucl. Lett., 11:7 (2014), 904–909  mathnet  crossref  elib  scopus

   2013
26. A. G. Sergeev, “Harmonic spheres conjecture”, Geometric methods in physics, XXX Workshop on Geometric Methods in Physics (Bialowiezha, Poland, June 26–July 2, 2011), Trends in Mathematics, eds. P. Kielanowski, S. Twareque Ali, A. Odzijewicz, M. Schlichenmaier, T. Voronov, Birkhäuser, Basel, 2013, 391–404  mathnet  crossref  mathscinet  zmath  scopus
27. A. G. Sergeev, Lectures on universal Teichmüller space, Lekts. Kursy NOC, 21, Steklov Math. Inst., RAS, Moscow, 2013 , 130 pp.  mathnet  mathnet  crossref  crossref  zmath  zmath  elib
28. A. Yu. Vasiliev, A. G. Sergeev, “Classical and quantum Teichmüller spaces”, Russian Math. Surveys, 68:3 (2013), 435–502  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 1)  elib  elib  scopus

   2014
29. A. G. Sergeev, “Adiabatic limit for hyperbolic Ginzburg–Landau equations”, Journal of Mathematical Sciences, 202:6 (2014), 887–896  mathnet  crossref  scopus

   2012
30. A. G. Sergeev, “Magnetic Bloch Theory and Noncommutative Geometry”, Proc. Steklov Inst. Math., 279 (2012), 181–193  mathnet  crossref  mathscinet  isi  elib
31. R. V. Palvelev, A. G. Sergeev, “Justification of the adiabatic principle for hyperbolic Ginzburg–Landau equations”, Proc. Steklov Inst. Math., 277 (2012), 191–205  mathnet  crossref  mathscinet  isi (cited: 4)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 4)
32. A. G. Sergeev, “Drobnyi kvantovyi effekt Kholla s tochki zreniya nekommutativnoi geometrii”, Trudy Seminara po vektornomu i tenzornomu analizu, 28, MGU, Moskva, 2012, 250–270
33. A. Sergeev, “Harmonic spheres and Yang–Mills fields”, J. Geom. Symmetry Phys., 27 (2012), 1–25  mathnet  crossref  mathscinet  zmath  elib  scopus

   2011
34. A. G. Sergeev, “Quantization of universal Teichmüller space”, Geometry and quantization, Trav. Math., 19, Univ. Luxemb., Luxembourg, 2011, 7–26  mathscinet (cited: 2)  zmath
35. A. Sergeev, “Quantization of the universal Teichmüller space”, Complex Var. Elliptic Equ., 56:1-4 (2011), 325–344  crossref  zmath  isi  elib  scopus

   2010
36. A. G. Sergeev, “Adiabatic limit in the Ginzburg–Landau and Seiberg–Witten equations”, Proc. Steklov Inst. Math., 270 (2010), 230–239  mathnet  crossref  mathscinet  zmath  isi  elib  elib  scopus
37. A. G. Sergeev, “Harmonic spheres conjecture”, Theoret. and Math. Phys., 164:3 (2010), 1140–1150  mathnet  crossref  crossref  adsnasa  isi (cited: 1)  elib  elib  scopus
38. A. Sergeev, Kähler geometry of loop spaces, MSJ Memoirs, 23, Mathematical Society of Japan, Tokyo, 2010 , xvi+212 pp.  mathscinet (cited: 6)  zmath

   2009
39. Armen G. Sergeev, “The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichmüller Space”, SIGMA, 5 (2009), 015 , 20 pp.  mathnet (cited: 4)  crossref  mathscinet (cited: 2)  zmath  isi (cited: 3)  elib (cited: 4)  scopus (cited: 4)
40. A. Sergeev, “Twistor quantization of the space of half-differentiable vector functions on the circle revisited”, Sci. China Ser. A. Math., 52:12 (2009), 2714–2729  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
41. A. G. Sergeev, “Twistor quantification for the loop space $\Omega\mathbb R^d$”, Zb. Pr. Inst. Mat. NAN Ukr., 6:1 (2009), 287–305  zmath
42. A. Sergeev, “Universal Teichmüller space”, Uzbek. Mat. Zh., 2009, no. 1, 168–174  mathscinet
43. A. G. Sergeev, Geometric quantization of loop spaces, Sovrem. Probl. Mat., 13, Steklov Math. Inst., RAS, Moscow, 2009 , 294 pp.  mathnet  crossref  elib

   2008
44. A. Sergeev, “Seiberg–Witten equations and pseudoholomorphic curves”, Symmetries in complex analysis, Contemp. Math., 468, Amer. Math. Soc., Providence, RI, 2008, 191–223  crossref  mathscinet (cited: 1)  zmath  isi
45. A. G. Sergeev, “Harmonic maps into loop spaces of compact Lie groups”, Sci. China Ser. A, 51:4 (2008), 695–706  crossref  mathscinet  isi  elib  scopus
46. A. Sergeev, “On quantization of universal Teichmüller space”, Geometric methods in physics, AIP Conf. Proc., 1079, Amer. Inst. Phys., Melville, NY, 2008, 51–64  crossref  mathscinet (cited: 1)  zmath  adsnasa  isi  scopus
47. A. G. Sergeev, “Quantization of universal Teichmüller space”, Vestnik of Samara Univ. Natural Sci., 8:1 (2008), 229–236
48. A. G. Sergeev, Harmonic maps, Lekts. Kursy NOC, 10, Steklov Math. Inst., RAS, Moscow, 2008 , 118 pp.  mathnet  crossref  zmath  elib
49. A. Sergeev, “Quantization of the universal Teichmueller space”, XXVII Workshop on Geometric Methods in Physics (Bialowieza, June 29 – July 5, 2008), University of Bialystok, 2008
50. A. G. Sergeev, “Quantization of the Universal Teichmüller Space”, Proc. Steklov Inst. Math., 263 (2008), 163–188  mathnet  crossref  mathscinet  zmath  isi  elib  elib  scopus
51. A. G. Sergeev, “Twistor quantization of loop spaces of compact Lie groups”, Theoret. and Math. Phys., 157:3 (2008), 1745–1759  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus
52. A. Sergeev, Kähler geometry of loop spaces, Nagoya Math. Lectures, 7, Nagoya Univ., Nagoya, 2008 , 226 pp. http://hdl.handle.net/2237/12240

   2007
53. A. Sergeev, “Grassmannian sigma-models”, J. Geom. Symmetry Phys., 9 (2007), 45–65  mathscinet (cited: 1)  zmath  elib (cited: 1)  scopus (cited: 1)

   2006
54. A. G. Sergeev, “Harmonic mappings into loop spaces of compact Lie groups”, J. Contemp. Math. Anal., 41:5 (2006), 49–62 (2007)  mathscinet
55. A. Sergeev, “Seiberg–Witten equations and pseudoholomorphic curves”, J. Geom. Symmetry Phys., 5 (2006), 106–117  mathscinet (cited: 1)  zmath

   2008
56. A. G. Sergeev, “Harmonic maps into loop spaces of compact Lie groups”, Journal of Mathematical Sciences, 149:5 (2008), 1608–1617  mathnet  crossref  mathscinet  zmath  scopus

   2006
57. A. G. Sergeev, “Kähler Geometry of the Universal Teichmüller Space and Coadjoint Orbits of the Virasoro Group”, Proc. Steklov Inst. Math., 253 (2006), 160–185  mathnet  crossref  mathscinet  elib  scopus
58. A. G. Sergeev, “Harmonic maps into loop spaces of compact Lie groups”, Supersymmetries and quantum symmetries, Joint Inst. for Nuclear Res., Dubna, 2006, 415–424

   2005
59. A. G. Sergeev, “Adiabatic paths and pseudoholomorphic curves”, Sci. China Ser. A, 48, suppl. (2005), 168–179  crossref  mathscinet  zmath  isi  elib  scopus
60. A. G. Sergeev, “O kelerovoi geometrii prostranstv petel”, Geometricheskii analiz i ego prilozheniya, Volgogradskii gos. un-t, Volgograd, 2005, 181–202
61. A. G. Sergeev, “Abrikosovskie struny i uravneniya Zaiberga–Vittena”, Globus. Obschematematicheskii seminar, Sbornik trudov seminara «Globus», 2, Mosk. tsentr nepr. matem. obraz., M., 2005, 186–201
62. M. Wolf, A. D. Popov, A. G. Sergeev, “Nontrivial Solutions of Seiberg–Witten Equations on the Noncommutative 4-Dimensional Euclidean Space”, Proc. Steklov Inst. Math., 251 (2005), 121–131  mathnet  mathscinet  zmath

   2004
63. A. G. Sergeev, “Adiabatic limit in the Abelian Higgs model and Seiberg–Witten equations”, Supersymmetries and quantum symmetries, Joint Inst. for Nuclear Res., Dubna, 2004, 351–361
64. A. V. Domrin, A. G. Sergeev, Lectures on complex analysis. Part I, Steklov Math. Inst., RAS, Moscow, 2004 http://www.mi.ras.ru/books/pdf/ser1.pdf  mathscinet
65. A. V. Domrin, A. G. Sergeev, Lectures on complex analysis. Part II, Steklov Math. Inst., RAS, Moscow, 2004 http://www.mi.ras.ru/spm/pdf/ser2.pdf  mathscinet
66. A. G. Sergeev, “Adiabatic limit in the Seiberg-Witten equations”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 281–295  mathscinet (cited: 2)  zmath  isi (cited: 7)
67. A. G. Sergeev, “Harmonic maps into homogeneous Riemannian manifolds: twistor approach”, Russian Math. Surveys, 59:6 (2004), 1181–1203  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 1)  scopus (cited: 1)

   2003
68. A. G. Sergeev, “Adiabatic limits and Abrikosov strings”, Fundamental mathematics today, Nezavis. Mosk. Univ., 2003, 276–283  mathscinet
69. A. D. Popov, A. G. Sergeev, M. Wolf, “Seiberg–Witten monopole equations on noncommutative $\mathbb R^4$”, J. Math. Phys., 44:10 (2003), 4527–4554  crossref  mathscinet (cited: 8)  zmath  adsnasa  isi (cited: 22)  elib (cited: 23)  scopus (cited: 22)

   2004
70. A. G. Sergeev, “Adiabatic Limit for Some Nonlinear Equations of Gauge Field Theory”, Journal of Mathematical Sciences, 124:6 (2004), 5407–5416  mathnet  crossref  mathscinet  zmath

   2002
71. A. G. Sergeev, Vortices and Seiberg–Witten equations, Nagoya Math. Lect., 5, Nagoya Univ., Nagoya, 2002 , vi+87 pp.

   2001
72. A. Sergeev, “Invariant domains of holomorphy and the extended future tube conjecture”, Coherent states, quantization and gravity, Wyd. Uniw. Warszaw., Warszawa, 2001, 273–280
73. A. G. Sergeev, Kähler geometry of loop spaces, Moscow Centre of Cont. Mathem. Education, Moscow, 2001 , 127 pp.
74. A. G. Sergeev, “Seiberg–Witten Equations and Complex Abrikosov Strings”, Proc. Steklov Inst. Math., 235 (2001), 215–250  mathnet  mathscinet  zmath

   2000
75. A. Sergeev, “$\mathrm{Diff}_+(S^1)/S^1$ as a space of complex structures on loop spaces of compact Lie groups”, Stochastic processes, physics and geometry: new interplays, II (Leipzig, 1999), CMS Conf. Proc., 29, Amer. Math. Soc., Providence, RI, 2000, 573–588  mathscinet
76. A. G. Sergeev, Xian-Yu Zhou, “Extended Future Tube Conjecture”, Proc. Steklov Inst. Math., 228 (2000), 25–42  mathnet  mathscinet  zmath

   1999
77. V. A. Zaitseva, V. V. Kruglov, A. G. Sergeev, M. S. Strigunova, K. A. Trushkin, “Remarks on the Loop Groups of Compact Lie Groups and the Diffeomorphism Group of the Circle”, Proc. Steklov Inst. Math., 224 (1999), 124–136  mathnet  mathscinet  zmath

   1998
78. A. G. Sergeev, “Twistor quantization of Kähler phase manifolds”, Quantization, coherent states, and Poisson structures (Białowieża, 1995), PWN, Warsaw, 1998, 117–120  mathscinet
79. I. V. Maresin, A. G. Sergeev, “A microlocal version of Cartan-Grauert's theorem”, Complex analysis and applications (Warsaw, 1997), Ann. Polon. Math., 70 (1998), 157–162  mathscinet  zmath
80. A. G. Sergeev, “Twistor quantization of loop spaces and general Kähler manifolds”, Operator theory for complex and hypercomplex analysis (Mexico City, 1994), Contemp. Math., 212, Amer. Math. Soc., Providence, RI, 1998, 221–228  crossref  mathscinet  zmath
81. A. G. Sergeev, “O rasseyanii vikhrevykh reshenii uravnenii Ginzburga–Landau”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy matematicheskogo obrazovaniya, Sbornik statei, v. 2, Ros. un-t druzhby narodov, M., 1998, 29–34

   1997
82. A. Sergeev, “Vortex equations”, Quantizations, deformations and coherent states (Białowieża, 1996), Rep. Math. Phys., 40:2 (1997), 329–341  crossref  mathscinet  zmath  adsnasa  elib  scopus
83. A. G. Sergeev, “On twistor quantization of loop spaces and Kähler manifolds”, Topics in complex analysis, differential geometry and mathematical physics (St. Konstantin, 1996), World Sci. Publ., River Edge, NJ, 1997, 148–157  mathscinet  zmath
84. J. Davidov, A. G. Sergeev, “Twistor quantization of loop spaces”, Proc. Steklov Inst. Math., 217 (1997), 1–90  mathnet  mathscinet  zmath

   1996
85. A. G. Sergeev, “Twistor quantization of loop spaces and Kähler phase manifolds”, Espaces de lacets, Proc. Jour. Math. (Strasbourg, 1994), eds. R. Leandre, S. Paycha, T. Wurzbacher, IRMA, Strasbourg, 1996, 81–87

   1995
86. A. G. Sergeev, “On invariant domains of holomorphy”, Generalizations of complex analysis and their applications in physics, I (Warsaw/Rynia, 1994), Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform., 19, 1995, 11–20  mathscinet  zmath
87. A. G. Sergeev, “On invariant domains of holomorphy”, Topics in complex analysis (Warsaw, 1992), Banach Center Publ., 31, Polish Acad. Sci., Warsaw, 1995, 349–357  mathscinet  zmath

   1994
88. A. D. Popov, A. G. Sergeev, “Twistor quantization of bosonic string theory”, Interface between physics and mathematics (Hangzhou, 1993), World Sci. Publ., River Edge, NJ, 1994, 213–223  mathscinet
89. A. D. Popov, A. G. Sergeev, “Geometric quantization of string theory using twistor approach”, Quantization and infinite-dimensional systems (Bialowieza, 1993), Plenum, New York, 1994, 43–51  crossref  mathscinet  zmath
90. A. D. Popov, A. G. Sergeev, “Symplectic twistors and geometric quantization of strings”, Algebraic geometry and its applications (Yaroslavl', 1992), Aspects Math., E25, Vieweg, Braunschweig, 1994, 137–157  crossref  mathscinet  zmath
91. V. S. Vladimirov, V. V. Zharinov, A. G. Sergeev, “Bogolyubov's “edge of the wedge” theorem, its development and applications”, Russian Math. Surveys, 49:5 (1994), 51–65  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 4)

   1995
92. A. G. Sergeev, Xiangyu Zhou, “On invariant domains of holomorphy”, Proc. Steklov Inst. Math., 203 (1995), 145–155  mathnet  mathscinet  zmath

   1993
93. A. G. Sergeev, “On matrix Reinhardt and circled domains”, Several complex variables (Stockholm, 1987/1988), Math. Notes, 38, Princeton Univ. Press, Princeton, NJ, 1993, 573–586  mathnet (cited: 1)  mathscinet
94. A. G. Sergeev, “Holomorphic hulls with respect to invariant functions”, Complex analysis and related topics, Univ. of Amsterdam, Amsterdam, 1993, 127–131
95. J. Davidov, A. G. Sergeev, “Twistor spaces and harmonic maps”, Russian Math. Surveys, 48:3 (1993), 1–91  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 11)
96. I. V. Volovich, A. K. Gushchin, A. A. Dezin, Yu. N. Drozhzhinov, V. V. Zharinov, B. I. Zavialov, V. A. Il'in, V. M. Millionshchikov, V. P. Mikhailov, A. G. Sergeev, “Vasiliǐ Sergeevich Vladimirov (on the occasion of his seventieth birthday)”, Differ. Equ., 29:2 (1993), 305–313  mathnet  mathscinet

   1992
97. A. D. Popov, A. G. Sergeev, “Infinite dimensional Kähler manifolds and strings”, Publ. IRMA (Lille), 28:II (1992), 1–25
98. A. D. Popov, A. G. Sergeev, Bosonic strings, ghosts and geometric quantization, Soobscheniya Ob'edinennogo instituta yadernykh issledovanii [Communications of the Joint Institute for Nuclear Research], JINR-E2-92-261, Joint Inst. Nuclear Res., Dubna, 1992 , 25 pp.  mathscinet

   1991
99. A. G. Sergeev, “On complex analysis in tube cones”, Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., 52, Amer. Math. Soc., Providence, RI, 1991, 173–190  crossref  mathscinet

   1992
100. A. G. Sergeev, P. Heinzner, “The extended matrix disk is a domain of holomorphy”, Math. USSR-Izv., 38:3 (1992), 637–645  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 3)

   1990
101. A. G. Sergeev, S. V. Chechin, “Scattering of slowly moving vortices in the Abelian $(2+1)$-dimensional Higgs model”, Theoret. and Math. Phys., 85:3 (1990), 1289–1299  mathnet  crossref  mathscinet  adsnasa  isi (cited: 4)  scopus (cited: 6)
102. P. Heinzner, A. G. Sergeev, The extended future tube conjecture for the compact model, Bericht Nr. 147, Fak. fuer Mathem. Ruhr-Univ., Bochum, 1990 , 13 pp.

   1989
103. A. G. Sergeev, “Twistor theory and classical gauge fields: a review (Russian)”, Monopoles. Topological and variational methdos, “Mir”, Moscow, 1989, 492–555
104. A. G. Sergeev, “On complex analysis in the future tube”, Complex analysis and applications '87 (Varna, 1987), Publ. House Bulgar. Acad. Sci., Sofia, 1989, 450–459  mathscinet

   1988
105. A. G. Sergeev, On matrix and Reinhardt domains, Preprint, Inst. Mittag-Leffler, Stockholm, 1988 , 7 pp.
106. A. G. Sergeev, “Integral representations and the $\overline\partial$-equation in the future tube”, Functional and numerical methods in mathematical physics, “Naukova Dumka”, Kiev, 1988, 204–207  mathscinet
107. A. G. Sergeev, “On the behavior of the solutions of the $\overline\partial$-equation on the boundary of the future tube”, Soviet Math. Dokl., 37:1 (1988), 83–87  mathnet  mathscinet  zmath

   1987
108. A. G. Sergeev, “Patologicheskoe povedenie reshenii $\overline\partial$-uravneniya na granitse truby buduschego”, Issledovaniya po kompleksnomu analizu, Otdel fiziki i matematiki Bashkir. filiala AN SSSR, Ufa, 1987, 168–181
109. A. G. Sergeev, “The Lindelöf theorem, and pseudoconvex neighborhoods for the future tube”, Current problems in mathematical physics, v. 2, Tbilis. Gos. Univ., Tbilisi, 1987, 118–125  mathscinet

   1986
110. A. G. Sergeev, “The future tube as one of the basic examples of pseudoconvex domains”, Complex analysis and applications '85 (Varna, 1985), Publ. House Bulgar. Acad. Sci., Sofia, 1986, 592–600  mathscinet
111. A. G. Sergeev, “Twistors and gauge fields”, Internat. J. Math. Math. Sci., 9:2 (1986), 209–221  crossref  mathscinet  zmath

   1987
112. A. G. Sergeev, “Complex geometry and integral representations in the future tube”, Math. USSR-Izv., 29:3 (1987), 597–628  mathnet  crossref  mathscinet  zmath

   1985
113. A. G. Sergeev, “Estimates for the Bergman projection in the future tube”, Multidimensional complex analysis, Akad. Nauk SSSR Sibirsk. Otdel. Inst. Fiz., Krasnoyarsk, 1985, 161–172  mathscinet
114. V. S. Vladimirov, A. G. Sergeev, “Compactification of Minkowski space and complex analysis in the future tube”, Ann. Polon. Math., 46 (1985), 439–454  mathscinet  zmath
115. V. S. Vladimirov, A. G. Sergeev, “Complex analysis in the future tube”, Complex analysis—several variables – 2, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 8, VINITI, Moscow, 1985, 191–266  mathnet  mathscinet  zmath
116. A. G. Sergeev, “Estimates of integral representations in a future tube”, Russian Math. Surveys, 40:4 (1985), 215–216  mathnet  crossref  mathscinet  zmath  adsnasa  isi

   1984
117. A. G. Sergeev, “Twistors and gauge fields”, Complex methods in mathematical physics, Inst. of Applied Mathem. and Mech. of Ukrainian SSR, Donetsk, 1984, 81–94
118. A. G. Sergeev, “A criterion for boundedness of singular integral operators with complicated singularities”, Math. USSR-Izv., 22:2 (1984), 309–327  mathnet  crossref  mathscinet  zmath

   1983
119. A. G. Sergeev, “Complex geometry and integral representations in the future tube in $\mathbb C^3$”, Theoret. and Math. Phys., 54:1 (1983), 62–70  mathnet  crossref  mathscinet  zmath  adsnasa  isi  scopus (cited: 1)
120. A. G. Sergeev, “On the boundedness of singular integral operators with complicated singularities”, Sov. Math. Dokl., 27 (1983), 40–42  mathscinet  zmath  isi

   1981
121. A. G. Sergeev, “Integral representations and estimates for the $\overline\partial$-equation in psedoconvex polyhedra (Russian)”, Generalized functions and their applications in mathematical physics, Steklov Mathematical Institute, Moscow, 1981, 483–486
122. A. G. Sergeev, G. M. Henkin, “Uniform estimates for solutions of the $\overline\partial$-equation in pseudoconvex polyhedra”, Math. USSR-Sb., 40:4 (1981), 469–507  mathnet  crossref  mathscinet  zmath  isi (cited: 3)

   1978
123. A. G. Sergeev, “Uniform estimates for the $\overline\partial$-problem in a Levi-Weil domain”, Sov. Math. Dokl., 18 (1978), 1335–1338  mathscinet  zmath

   1975
124. A. G. Sergeev, “Theory of multiplicative hyperfunctions”, Uspekhi Mat. Nauk, 30:1(181) (1975), 257–258  mathnet  mathscinet  zmath

   1974
125. A. G. Sergeev, “A local $L_p$-principle in the factorization problem”, Uspekhi Mat. Nauk, 29:6(180) (1974), 175–176  mathnet  mathscinet  zmath

   1973
126. A. G. Sergeev, “A factorization of operator-valued functions that are Hölder continuous”, Vestnik Moskov. Univ. Ser. I Mat. Meh., 28:3 (1973), 58–65  mathscinet  zmath

   1972
127. A. G. Sergeev, “The asymptotic behavior of the Jost function and of the eigenvalues of the Regge problem”, Differencial'nye Uravnenija, 8 (1972), 925–927  mathnet  mathscinet  zmath
128. A. G. Sergeev, “Factorization of operator-valued functions that are Hölder continuous”, Uspekhi Mat. Nauk, 27:6(168) (1972), 253  mathnet  mathscinet  zmath
Home page

© Steklov Mathematical Institute of RAS, 2004–2018