|
|
|
Полехин Иван Юрьевич
(публикации за последние годы)
|
Статьи
|
|
|
2022 |
1. |
Ivan Polekhin, “The Spherical Kapitza-Whitney Pendulum”, Regular & Chaotic Dynamics, 2022, no. 1 (to appear) , arXiv: 2105.11980 |
2. |
И. Ю. Полехин, “О доказательстве существования вынужденных колебаний с помощью добавления диссипативных сил
на примере сферического маятника”, ТМФ, 211:2 (2022), 295–305 ; I. Yu. Polekhin, “The existence proof for forced oscillations by adding dissipative forces in the example of a spherical pendulum”, Theoret. and Math. Phys., 211:2 (2022), 692–700 |
3. |
Ivan Yu. Polekhin, “The Spherical Kapitza – Whitney Pendulum”, Regul. Chaotic Dyn., 27:1 (2022), 65–76 |
|
2021 |
4. |
Ivan Polekhin, “On the application of the Ważewski method to the problem of global stabilization”, Systems Control Lett., 153 (2021), 104953 , 7 pp., arXiv: 1912.04027 |
5. |
Valery Kozlov, Ivan Polekhin, “On the non-integrability and dynamics of discrete models of threads”, Nonlinearity, 34:9 (2021), 6398–6416 , arXiv: 2009.09517 |
|
2020 |
6. |
И. Ю. Полехин, “Некоторые результаты о вынужденных колебаниях в механических системах”, Избранные вопросы математики и механики, Сборник статей. К 70-летию со дня рождения академика Валерия Васильевича Козлова, Тр. МИАН, 310, МИАН, М., 2020, 267–279 https://arxiv.org/abs/1912.03987 (цит.: 1) [I. Yu. Polekhin, Избранные вопросы математики и механики, Tr. Mat. Inst. Steklova, 310, Steklov Math. Inst., Moscow, 2020 ] |
7. |
Ivan Polekhin, “Remarks on Forced Oscillations in Some Systems with Gyroscopic Forces”, Rus. J. Nonlin. Dyn., 16:2 (2020), 343–353 , arXiv: 1912.04076 |
8. |
Ivan Yu. Polekhin, “The Method of Averaging for the Kapitza – Whitney Pendulum”, Regul. Chaotic Dyn., 25:4 (2020), 401–410 , arXiv: 2006.03406 (cited: 1) (cited: 1) (cited: 2) |
|
2019 |
9. |
Ivan Yu. Polekhin, “Precession of the Kovalevskaya and Goryachev – Chaplygin Tops”, Regul. Chaotic Dyn., 24:3 (2019), 281–297 |
10. |
Ivan Polekhin, “Remarks on the Covering of the Possible Motion Area by Solutions in Rigid Body Systems”, Int. J. Nonlinear Sci. Numer. Simul., 20:3-4 (2019), 293–302 |
|
2018 |
11. |
Ivan Polekhin, “On impulsive isoenergetic control in systems with gyroscopic forces”, Int. J. Non-Linear Mech., 100 (2018), 1–5 (cited: 2) (cited: 2) |
12. |
Ivan Polekhin, “On topological obstructions to global stabilization of an inverted pendulum”, Systems Control Lett., 113 (2018), 31–35 (cited: 9) (cited: 11) |
13. |
I. Yu. Polekhin, “On motions without falling of an inverted pendulum with dry friction”, J. Geometric Mech., 10:4 (2018), 411–417 (cited: 1) (cited: 1) |
14. |
И. Ю. Полехин, “О невозможности глобальной стабилизации волчка Лагранжа”, ПММ, 82:5 (2018), 599–604 (цит.: 2) ; I. Yu. Polekhin, “On the Impossibility of Global Stabilization of the Lagrange Top”, Mechanics of Solids, 53:2 (2018), 71–75 (cited: 2) (cited: 2) |
|
2017 |
15. |
Valery Kozlov, Ivan Polekhin, “On the covering of a Hill’s region by solutions in systems with gyroscopic forces”, Nonlinear Anal., 148 (2017), 138–146 (cited: 4) (cited: 5) |
16. |
Ivan Yu. Polekhin, “Classical Perturbation Theory and Resonances in Some Rigid Body Systems”, Regul. Chaotic Dyn., 22:2 (2017), 136–147 |
17. |
Valery Kozlov, Ivan Polekhin, “On the covering of a Hill's region by solutions in the restricted three-body problem”, Celest. Mech. Dyn. Astr., 127:3 (2017), 331–341 (cited: 3) (cited: 4) |
18. |
Ivan Polekhin, “A Topological View on Forced Oscillations and Control of an Inverted Pendulum”, Geometric Science of Information. GSI 2017, Lecture Notes in Comput. Sci., 10589, Springer, Cham, 2017, 329–335 (cited: 2) (cited: 2) |
|
2016 |
19. |
Ivan Polekhin, “On forced oscillations in groups of interacting nonlinear systems”, Nonlinear Anal., 135 (2016), 120–128 (cited: 6) (cited: 8) |
|
2015 |
20. |
Ivan Polekhin, “Forced oscillations of a massive point on a compact surface with a boundary”, Nonlinear Anal., 128 (2015), 100–105 (cited: 9) (cited: 11) |
|
2014 |
21. |
И. Ю. Полехин, “Примеры использования топологических методов в задаче о перевернутом маятнике на подвижном основании”, Нелинейная динам., 10:4 (2014), 465–472 (цит.: 10) (цит.: 1) |
|
2012 |
22. |
И. Ю. Полехин, “О гамильтоновых системах с малыми неавтономными возмущениями”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2012, № 1, 47–53 ; I. Yu. Polekhin, “Hamiltonian systems under small nonautonomous perturbations”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 67:1 (2012), 11–17 |
Тезисы докладов
|
|
|
2020 |
23. |
Ivan Polekhin, “Topological considerations and the method of averaging: A connection between local and global results”, 2020 International Conference Nonlinearity, Information and Robotics, NIR 2020 (3 December 2020 - 6 December 2020), Institute of Electrical and Electronics Engineers Inc., 2020 |
ArXiv
|
|
|
2019 |
24. |
Ivan Polekhin, Averaging method and asymptotic solutions in some mechanical problems, 2019 , 13 pp., arXiv: 1912.04626; ; ; ; ; |
|