# $\frac{\partial (V^{\lambda} + f)}{\partial n_{+}}(z) = \frac{\partial (V^{\lambda} + f)}{\partial n_{-}}(z), \qquad z \in \Gamma^{0}$

# Workshop on Complex Analysis and its Applications

26-27 December, 2011

#### Valerii Kozlov

(Steklov Mathematical Institute, Russian Academy of Sciences)

#### **Leonid Pastur**

(Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar'kov)

### **Alexander Aptekarev**

(M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences, Moscow)

#### **Azimbai Sadullaev**

(National University of Uzbekistan)

### **Victor Goryainov**

(Volzhsky Institute of Humanities)

## **Andrei Bogatyrev**

(Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow)

# Valerii Kalyagin

(National Research University "Higher School of Economics", Nizhny Novgorod Branch)

